首页> 外文会议>IEEE Symposium on Security and Privacy >F-BLEAU: Fast Black-Box Leakage Estimation
【24h】

F-BLEAU: Fast Black-Box Leakage Estimation

机译:F-BLEAU:快速黑盒泄漏估计

获取原文

摘要

We consider the problem of measuring how much a system reveals about its secret inputs. We work in the black-box setting: we assume no prior knowledge of the system's internals, and we run the system for choices of secrets and measure its leakage from the respective outputs. Our goal is to estimate the Bayes risk, from which one can derive some of the most popular leakage measures (e.g., min-entropy leakage). The state-of-the-art method for estimating these leakage measures is the frequentist paradigm, which approximates the system's internals by looking at the frequencies of its inputs and outputs. Unfortunately, this does not scale for systems with large output spaces, where it would require too many input-output examples. Consequently, it also cannot be applied to systems with continuous outputs (e.g., time side channels, network traffic). In this paper, we exploit an analogy between Machine Learning (ML) and black-box leakage estimation to show that the Bayes risk of a system can be estimated by using a class of ML methods: the universally consistent learning rules; these rules can exploit patterns in the input-output examples to improve the estimates' convergence, while retaining formal optimality guarantees. We focus on a set of them, the nearest neighbor rules; we show that they significantly reduce the number of black-box queries required for a precise estimation whenever nearby outputs tend to be produced by the same secret; furthermore, some of them can tackle systems with continuous outputs. We illustrate the applicability of these techniques on both synthetic and real-world data, and we compare them with the state-of-the-art tool, leakiEst, which is based on the frequentist approach.
机译:我们考虑测量系统揭示其秘密投入的问题的问题。我们在黑盒设置中工作:我们不假设没有对系统内部的知识,我们运行系统的秘密选择,并测量其与各个输出的泄漏。我们的目标是估计贝叶斯风险,从中可以从中获得一些最流行的泄漏措施(例如,初熵泄漏)。用于估计这些泄漏措施的最先进方法是频繁的范式,它通过查看其输入和输出的频率来近似于系统的内部。不幸的是,这对具有大输出空间的系统不扩展,其中需要太多的输入输出示例。因此,它也不能应用于具有连续输出的系统(例如,时间侧通道,网络流量)。在本文中,我们利用了机器学习(ML)和黑盒泄漏估计之间的类比,以表明可以通过使用一类ML方法来估算系统的贝叶斯风险:普遍一致的学习规则;这些规则可以利用输入输出示例中的模式来改善估算的收敛性,同时保留正式的最优性保证。我们专注于一套,最近的邻居规则;我们表明,只要附近的输出往往由同一秘密产生,它们显着减少了精确估计所需的黑匣子查询的数量;此外,其中一些可以用连续输出来解决系统。我们说明了这些技术对合成和现实世界数据的适用性,我们将它们与最先进的工具进行比较,这是基于频繁的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号