首页> 外文会议>IEEE International Conference on Mechatronics and Automation >Dissipative Particle Dynamics Simulation of Cells Deformation under Tensile Loading
【24h】

Dissipative Particle Dynamics Simulation of Cells Deformation under Tensile Loading

机译:拉伸载荷作用下细胞变形的耗散粒子动力学模拟

获取原文

摘要

All cells in the human body are in a complex physiological and mechanical environment, which is regulated by different mechanical forces. Previous studies have mainly focused on characterizing the alterations of cell morphology and biochemical signaling pathway under different mechanical stimuli by means of experimental techniques. However, few studies have explored how cells respond to mechanical stimuli through numerical simulation across multiscale. Dissipative Particle Dynamics (DPD) is used to establish a discrete three-dimensional cell mechanics model in suspension state to study cell morphology remodeling under tension load, and to analyze its mechanical properties, in order to reveal the relationship between structure and function. The simulation results showed that when the stretching force was 40 pN, the cells had changed significantly. The greater the tension, the greater the degree of deformation of cells. When the simulation step is fixed, the stretching time of the cells becomes longer and longer with the increase of the stretching force. Therefore, the response of cells to tensile loads is nonlinear. The model established in this paper provides a reasonable prediction of cell morphological changes during stretching. Our new finding and results shed the light on studying the behavior and function of cells under different mechanical stimuli in three-dimensional environment.
机译:人体中的所有细胞都处于复杂的生理和机械环境中,这是由不同的机械力调节的。以往的研究主要集中在通过实验技术表征在不同机械刺激下的细胞形态和生化信号通路的变化。但是,很少有研究探索细胞如何通过跨多尺度的数值模拟来响应机械刺激。耗散粒子动力学(DPD)用于建立悬浮状态下的离散三维细胞力学模型,以研究在张力载荷下的细胞形态重塑,并分析其力学性能,以揭示结构与功能之间的关系。仿真结果表明,当拉伸力为40 pN时,细胞发生了明显变化。张力越大,细胞的变形程度越大。当模拟步骤固定时,单元的拉伸时间随着拉伸力的增加而变得越来越长。因此,单元格对拉伸载荷的响应是非线性的。本文建立的模型为拉伸过程中细胞形态的变化提供了合理的预测。我们的新发现和结果为研究三维环境中不同机械刺激下细胞的行为和功能提供了启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号