首页> 外文会议>IEEE International Conference on Plasma Sciences >Laser plasmas from picosecond laser filamentation in the atmosphere and its application on guided high voltage discharges
【24h】

Laser plasmas from picosecond laser filamentation in the atmosphere and its application on guided high voltage discharges

机译:激光等离子体来自大气中的PICOSECOND激光丝状丝及其在引导高压放电的应用

获取原文

摘要

Summary form only given. Femtosecond laser filamentation in the atmosphere produces plasmas with densities on the order of 1016 cm-3 or less than 1% of air ionized [1]. Filamentation is a nonlinear process where a short laser pulse is propagating through a nonlinear medium while a dynamic balance between non-linear focusing, diffraction and plasma defocusing is established. The short lifetime and relative low temperature of the laser-generated plasma results in a high resistivity, making femtosecond filaments difficult to utilize for some applications including guiding high voltage electric discharges [2]. To achieve guided discharges with femtosecond filaments over several meters requires voltages larger than 100 kV between the electrodes. Alternatively nanosecond lasers have been used to create plasma sparks and trigger short discharges. The nanosecond laser plasma is denser and hotter in comparison to the femtosecond filament plasma. These properties result in a high conductivity and a fast trigger of the high voltage discharge [3]. However, the spatial extent of these plasmas is limited and only short discharges can be initiated. A recent experiment on picosecond laser filamentation [4] indicates the possibility of combining the properties of the two plasmas described above: an extended plasma channel with high conductivity. Here, we present experimental results that show the effect of picosecond laser filamentation on guiding high voltage discharges. The results indicate that higher conductivity plasma is produced in comparison to a femtosecond pulse. We achieved a reduction of threshold break down voltage by 20% with our experimental setup. The experiments are conducted using the COMET laser, at Jupiter Laser facility, Lawrence Livermore Laboratory.
机译:摘要表格仅给出。大气中的飞秒激光丝产生等离子体,密度为1016cm-3或小于1%的空气电离[1]。细丝是一种非线性过程,其中短的激光脉冲通过非线性介质传播,而非线性聚焦,衍射和等离子体散焦之间的动态平衡。激光产生的等离子体的短寿命和相对低温导致高电阻率,使FemtoSecond长丝难以利用一些应用,包括引导高压电放电[2]。为了在几米上实现与飞秒丝的引导放电,需要电极之间大于100kV的电压。或者,纳秒激光器已被用于产生等离子体火花并触发短路。与飞秒丝等离子体相比,纳秒激光等离子体是密集的,更热。这些性质导致高电导率和高压放电的快速触发[3]。然而,这些等离子体的空间程度是有限的,并且可以仅启动短路。最近关于PicoSecond激光丝的实验[4]表示可以组合上述两种等离子体的性质的可能性:具有高导电性的延伸等离子体通道。在这里,我们提出了实验结果,其显示PICOSECOND激光丝对引导高压放电的影响。结果表明与飞秒脉冲相比,产生较高的导电等离子体。我们的实验设置达到了20%的阈值下降电压的减少。实验是使用彗星激光器,在木星激光设施,Lawrence Livermore实验室进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号