首页> 外文会议>ASME international mechanical engineering congress and exposition >SELECTING NANOPARTICLE PROPERTIES TO MITIGATE RISKS TO WORKERS AND THE PUBLIC -A MACHINE LEARNING MODELING FRAMEWORK TO COMPARE PULMONARY TOXICITY RISKS OF NANOMATERIALS
【24h】

SELECTING NANOPARTICLE PROPERTIES TO MITIGATE RISKS TO WORKERS AND THE PUBLIC -A MACHINE LEARNING MODELING FRAMEWORK TO COMPARE PULMONARY TOXICITY RISKS OF NANOMATERIALS

机译:选择纳米颗粒特性以减轻对工人和公众的风险-比较纳米材料的肺毒性风险的机器学习模型框架

获取原文

摘要

Due to their size and unique chemical properties, nanomaterials have the potential to interact with living organisms in novel ways, leading to a spectrum of negative consequences. Though a relatively new materials science, already nanomaterial variants in the process of becoming too numerous to be screened for toxicity individually by traditional and expensive animal testing. As with conventional pollutants, the resulting backlog of untested new materials means that interim industry and regulatory risk management measures may be mismatched to the actual risk. The ability to minimize toxicity risk from a nanomaterial during the product or system design phase would simplify the risk assessment process and contribute to increased worker and consumer safety. Some attempts to address this problem have been made, primarily analyzing data from in vitro experiments, which are of limited predictive value for the effects on whole organisms. The existing data on the toxicity of inhaled nanomaterials in animal models is sparse in comparison to the number of potential factors that may contribute to or aggravate nanomaterial toxicity, limiting the power of conventional statistical analysis to detect property/toxicity relationships. This situation is exacerbated by the fact that exhaustive chemical and physical characterization of all nanomaterial attributes in these studies is rare, due to resource or equipment constraints and dissimilar investigator priorities. This paper presents risk assessment models developed through a meta-analysis of in vivo nanomaterial rodent-inhalational toxicity studies. We apply machine learning techniques including regression trees and the related ensemble method, random forests in order to determine the relative contribution of different physical and chemical attributes on observed toxicity. These methods permit the use of data records with missing information without substituting presumed values and can reveal complex data relationships even in nonlinear contexts or conditional situations. Based on this analysis, we present a predictive risk model for the severity of inhaled nanomaterial toxicity based on a given set of nanomaterial attributes. This model reveals the anticipated change in the expected toxic response to choices of nanomaterial design (such as physical dimensions or chemical makeup). This methodology is intended to aid nanomaterial designers in identifying nanomaterial attributes that contribute to toxicity, giving them the opportunity to substitute safer variants while continuing to meet functional objectives. Findings from this analysis indicate that carbon nanotube (CNT) impurities explain at most 30% of the variance pulmonary toxicity as measured by polymorphonuclear neutrophils (PMN) count. Titanium dioxide nanoparticle size and aggregation affected the observed toxic response by less than ±10%. Difference in observed effects for a group of metal oxide nanoparticle associated with differences in Gibbs Free Energy on lactate dehydrogenase (LDH) concentrations amount to only 4% to the total variance. Other chemical descriptors of metal oxides were unimportant.
机译:由于其尺寸和独特的化学性质,纳米材料具有以新颖的方式与活生物体相互作用的潜力,从而导致一系列负面后果。尽管是一门相对较新的材料科学,但纳米材料的变体已经变得越来越多,以至于无法通过传统且昂贵的动物试验单独对其毒性进行筛选。与常规污染物一样,未经测试的新材料导致的积压意味着临时行业和法规风险管理措施可能与实际风险不匹配。在产品或系统设计阶段将纳米材料的毒性风险降至最低的能力将简化风险评估流程,并有助于提高工人和消费者的安全性。已经进行了一些解决该问题的尝试,主要是分析来自体外实验的数据,这些数据对于对整个生物的影响具有有限的预测价值。与可能导致或加剧纳米材料毒性的潜在因素相比,有关在动物模型中吸入纳米材料毒性的现有数据很少,从而限制了常规统计分析检测特性/毒性关系的能力。由于资源或设备的限制以及研究者的不同优先考虑,在这些研究中很少对所有纳米材料的属性进行详尽的化学和物理表征的事实加剧了这种情况。本文介绍了通过体内纳米材料啮齿动物吸入毒性研究的荟萃分析开发的风险评估模型。为了确定不同物理和化学属性对观察到的毒性的相对贡献,我们应用了机器学习技术,包括回归树和相关的集成方法,随机森林。这些方法允许使用缺少信息的数据记录而无需替换假定的值,并且即使在非线性情况下或有条件的情况下,也可以揭示复杂的数据关系。基于此分析,我们基于给定的一组纳米材料属性,为吸入的纳米材料毒性的严重性提供了一种预测性风险模型。该模型揭示了对纳米材料设计选择(例如物理尺寸或化学组成)的预期毒性反应的预期变化。该方法旨在帮助纳米材料设计者识别导致毒性的纳米材料属性,使他们有机会替代更安全的变体,同时继续满足功能目标。从该分析中发现,碳纳米管(CNT)杂质最多可解释30%的变异性肺毒性,如通过多形核中性粒细胞(PMN)计数所测量的。二氧化钛纳米颗粒的大小和聚集对观察到的毒性反应的影响小于±10%。与吉布斯自由能对乳酸脱氢酶(LDH)浓度的差异相关的一组金属氧化物纳米粒子的观察到的差异仅占总差异的4%。金属氧化物的其他化学指标并不重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号