首页> 外文会议>MRS fall meeting >Influence of Materials on the Performance Limits of Microactuators
【24h】

Influence of Materials on the Performance Limits of Microactuators

机译:材料对微执行器性能极限的影响

获取原文

摘要

The selection of actuators at the micro-scale requires an understanding of the performance limits of different actuation mechanisms governed by the optimal selection of materials. This paper presents the results of analyses for elastic bi-material actuators based on simple beam theory and lumped parameter thermal models. Comparisons are made among commonly employed actuation schemes (electro-thermal, piezoelectric and shape memory) at micro scales and promising candidate materials are identified. Polymeric films on Si subjected to electro-thermal heating are optimal candidates for high displacement, low frequency devices while ferroelectric thin films of Pb-based ceramics on Si/ DLC are optimal for high force, high frequency devices. The ability to achieve ~10 kHz at scales < 100μm make electro-thermal actuators competitive with piezoelectric actuators considering the low work/volume obtained in piezoelectric actuation (~ 10~(-8)J.m~(-3).mV~(_2)). Although shape memory alloy (SMA) actuators such as Ni-Ti on Si deliver larger work (~ 1 J.m~(-3)K~(-2)) than electro-thermal actuators at relatively low frequencies (~ 1 kHz), the critical scale associated with the cessation of the shape memory effect forms the bounding limit for the actuator design. The built-in compressive stress levels (~ 1GPa) in thin films of Si and DLC could be exploited for realizing a high performance actuator by electro-thermal buckling.
机译:在微观尺度上选择致动器需要了解由最佳材料选择决定的不同致动机构的性能极限。本文介绍了基于简单梁理论和集总参数热模型的弹性双材料执行器的分析结果。在微观尺度上对常用的驱动方案(电热,压电和形状记忆)进行了比较,并确定了有希望的候选材料。 Si上经过电热加热的聚合物膜是高位移,低频器件的最佳选择,而Si / DLC上的Pb基陶瓷的铁电薄膜则是高力,高频器件的最佳选择。考虑到压电致动器的功/体积低(〜10〜(-8)Jm〜(-3).mV〜(_2),在小于100μm的刻度下达到〜10 kHz的能力使电热致动器与压电致动器具有竞争力。 )。尽管在相对较低的频率(〜1 kHz)上,形状记忆合金(SMA)致动器(例如Si上的Ni-Ti)比电热致动器具有更大的功(〜1 Jm〜(-3)K〜(-2)),与形状记忆效应的停止相关的临界比例形成了执行器设计的界限。 Si和DLC薄膜中内置的压应力水平(〜1GPa)可以用于通过电热屈曲来实现高性能的执行器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号