首页> 外文会议>Conference on thermosense >Spectroradiometric calibration of blackbody sources
【24h】

Spectroradiometric calibration of blackbody sources

机译:黑体源的光谱辐射校正

获取原文

摘要

An IR camera responds to infrared radiant energy over a waveband determined by the camera optics and detector. Most cameras operate in either the 3 to 5 mu m or 8 to 12 mu m wavebands as they represent good atmospheric windows. Temperature measurement using these cameras is performed within the camera, which will correct for target emissivity and background temperatures. The algorithm that does this makes a key assumption: the target is a graybody source (constant emissivity over the waveband of the IR camera). To effect this calculation, modern infrared (IR) cameras are calibrated using blackbody sources. The calibration data set is stored in the camera firmware as a lookup table. To be accurate, blackbody sources must be graybodies with emissivities very close to one. The fact that there are no perfect blackbodies can be overcome as long as the emissivity is constant with wavelength. Spectroradiometric calibration of blackbody sources is the best way to ensure the radiant energy emanating from the source follows Planck's law over the waveband of the IR camera being calibrated (another way of saying graybody). At FLIR Systems, Inc. we used a CI Systems SR-5000 spectroradiometer to spectrally characterize 20 blackbody sources of various manufacturer and type. The spectral data were plotted compared to the Planck curve at the same temperature to see how "gray" the blackbody sources were. We also calculated an equivalent temperature that an IR camera would "see" due to any non-gray source behavior, by mathematically answering the question: What temperature would a blackbody need to be to produce the equivalent amount of radiant energy over a given waveband?The paper shows the experimental and mathematical approach to this problem. Results show cavity and "hybrid cavity" blackbodies perform best, with flat plate blackbodies performing well in most cases. The higher temperature flat plate blackbodies had some significant deviations from grayness in some wavebands.
机译:IR摄像机通过相机光学和检测器确定的波段响应红外辐射能量。大多数相机在3到5 mu m或8到12 mu m波段中操作,因为它们代表了良好的大气窗口。使用这些摄像机的温度测量在相机内进行,这将校正目标发射率和背景温度。这样做的算法使得关键假设:目标是灰体源(IR相机的波段的恒定发射率)。为了实现该计算,使用黑体来源校准现代红外线(IR)摄像机。校准数据集作为查找表存储在相机固件中。准确地说,黑体来源必须是非常接近的灰色曲折。只要发射率恒定的波长恒定,就没有完美的黑色码,就没有完美的黑色码。黑体来源的光谱校准是确保从源辐射的辐射能量在校准的红外摄像机的波段中介绍的最佳方式(另一种说法的灰体)。在Flir Systems,Inc。我们使用了CI Systems SR-5000 SpectrorIdiorometer,可以光谱表征了20个不同制造商和类型的黑体来源。与相同温度的普华斯克曲线相比,绘制光谱数据,以了解黑体源的“灰色”如何。我们还计算了IR相机将“看到”由于任何非灰度源行为,通过数学方式回答问题:黑体需要在给定波段上产生多少温度的温度?本文显示了这个问题的实验和数学方法。结果显示腔和“混合腔”黑人表现最佳,在大多数情况下,平板黑板表现良好。较高温度平板黑色odies在一些波段中具有一些显着偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号