首页> 外文会议>World biomaterials congress >Effects of dopamine and a dopamine analog on polydopamine-laced hydroxyapatite gelatin nanocomposites
【24h】

Effects of dopamine and a dopamine analog on polydopamine-laced hydroxyapatite gelatin nanocomposites

机译:多巴胺和多巴胺类似物对聚多巴胺固定的羟基磷灰石明胶纳米复合材料的影响

获取原文

摘要

Introduction: Hydroxyapatite with low endotoxin gelatin has been developed to mimic the biochemical and biomechanical properties of natural bone (Chang et al., 2003) Recently, polydopamine-laced hydroxyapatite gelatin-calcium silicate (PDHGCS) has been developed to address the processability of the hydroxyapatite nanocomposite for the application of bone regeneration (Ko et al., 2014). Dopamine consisting of two functional groups (catechol and ethyl amine) forms interconnected polymeric network to enhance physical property by increasing long range interactions within the material (Dyke et al., 2014)PI. We hypothesize that either increasing carbon length of amine group in dopamine or using a co-polymer P(LLA-co-PC) functionalized with catechol can further improve the mechanical property of PDHGCS. Methods and Materials: Synthesis of 12C-Dopamine: Synthesis is started with 1,2-dimethoxybenzene from which catechol function group was recovered to form the 12C-dopamine (Fig. 1). Synthesis of P(LLA-co-PC)-catechol: Copolymer was synthesized according to the previously reported method (Jason's 2012 Paper). Catechol-4C-SH was covalent attached to the polymer backbone through thiol-yne" click chemistry (Fig. 2). Preparation of PDHGCS Composites: Briefly, 150 mg Hap-Gel, 100 mg of Ca(OH)2 powder, and a series of predetermined amounts of dopamine or 12C-dopamine and P(LLA-co-PC)-catechol powders were mixed with 383 μL of 62% enTMOS on a -20 °C slab, followed by addition of 40 μL of 7.5% ammonium persulfate solution in room temperature3. The central composite design was used to determine the amount of dopamine and P(LLA-co-PC)-catechol. The mixture was then injected onto a mold to create cylindrical sample for compression tests. Results: The maximum compressive strength (-100 MPa) occurred around dopamine at 5 mg and co-polymer at 12.5 mg. The preliminary outcome suggests that the polymer was not significantly associated with the compress strength, and that the strength was a quadratic function of dopamine (p-value=0.047). Similarly, 12C-dopamine did not significantly increase the mechanical strength of the composite. Discussion and Conclusion: The low endotoxin gelatin can be incorporated into PDHGCS. Dried powder form of 12C-dopamine and P(LLA-co-PC)-catechol does not increase compressive strength of PDHGCS. Whether these constitutes can improve tensile strength remains to be tested. The incorporation of solution form (12C-dopmaine and copolymer) is under investigation. (Supported in part by NIH R01DE022816).
机译:简介:已开发出具有低内毒素明胶的羟基磷灰石来模仿天然骨骼的生化和生物力学特性(Chang等人,2003年)。近来,已开发了聚多巴胺层合的羟基磷灰石明胶-硅酸钙(PDHGCS)以解决牙本质的可加工性。羟基磷灰石纳米复合材料在骨再生中的应用(Ko等,2014)。由两个官能团(邻苯二酚和乙胺)组成的多巴胺形成相互连接的聚合物网络,以通过增加材料内部的长距离相互作用来增强物理性能(Dyke等人,2014)。我们假设增加多巴胺中胺基的碳长度或使用经邻苯二酚官能化的共聚物P(LLA-co-PC)可以进一步改善PDHGCS的机械性能。方法和材料:12C-多巴胺的合成:从1,2-二甲氧基苯开始合成,从中回收邻苯二酚官能团以形成12C-多巴胺(图1)。 P(LLA-co-PC)-邻苯二酚的合成:根据先前报道的方法(Jason's 2012 Paper)合成共聚物。儿茶酚-4C-SH通过硫醇-炔“点击”化学共价连接到聚合物主链上(图2)。PDHGCS复合材料的制备:简要地说,150 mg Hap-Gel,100 mg Ca(OH)2粉末和将一系列预定量的多巴胺或12C-多巴胺和P(LLA-co-PC)-邻苯二酚粉与383μL的62%enTMOS在-20°C的平板上混合,然后添加40μL的7.5%过硫酸铵3.使用中央复合设计确定多巴胺和P(LLA-co-PC)-邻苯二酚的含量,然后将混合物注入模具中以制成用于压缩测试的圆柱形样品。强度(-100 MPa)发生在5 mg的多巴胺和12.5 mg的共聚物周围。初步结果表明该聚合物与压缩强度没有显着相关,并且该强度是多巴胺的二次函数(p值= 0.047)。同样,12C-多巴胺并没有显着增加机械强度复合材料的强度。讨论与结论:低内毒素明胶可掺入PDHGCS中。 12C-多巴胺和P(LLA-co-PC)-邻苯二酚的干粉形式不会增加PDHGCS的抗压强度。这些成分是否可以提高抗张强度仍有待测试。溶液形式(12C-多巴胺和共聚物)的掺入正在研究中。 (NIH R01DE022816部分支持)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号