首页> 外文会议>Annual International Conference of the IEEE Engineering in Medicine and Biology Society >EM fields Comparison between Planar vs. Solenoidal μMS Coil Designs for Nerve Stimulation
【24h】

EM fields Comparison between Planar vs. Solenoidal μMS Coil Designs for Nerve Stimulation

机译:Planar与电磁μms线圈设计用于神经刺激的EM场比较

获取原文

摘要

Micro-magnetic stimulation (μMS) is an emerging neurostimulation technology that promises to revolutionize the therapeutic stimulation of the human nervous system. μMS uses sub-millimeter sized coils that can be implemented in the central nervous system to elicit neuronal activation using magnetically induced electric currents. By their microscopic size, μMS coils can be acutely implanted in deep brain structures to deliver therapeutic stimulation with effects analogous to those achieved by state-of-the-art deep brain stimulation (DBS). However, μMS technology has inherent advantages that make it particularly appealing for clinical applications. Specifically, μMS induces a focal electric current in the tissue, limiting the extent of activation to a few hundred microns. We recently demonstrated the feasibility of using μMS to elicit neuronal activation in vitro [1], as well as the possibility of activating neuronal circuitry on the system level in rodents [2]. As μMS is a novel technology, its mechanism(s) of nerve activation, induced field characteristics, and optimum topological features are yet to be explored. In this regard, numerical simulations play a crucially important role, because they provide an insight into spatial distribution of induced electric fields, which in turn, dictate the dynamics of nerve stimulation. Here we report results of numerical simulations to predict the nerve-stimulation performance of different μMS geometries.
机译:微磁刺激(μms)是一种新兴的神经刺激技术,其承诺彻底改变人体神经系统的治疗刺激。 μms使用亚毫米尺寸线圈,其可以在中枢神经系统中实现,以引出使用磁感应电流的神经元激活。通过它们的显微尺寸,可以在深脑结构中敏锐地植入μms线圈,以递送与通过最先进的深脑刺激(DBS)实现的效果的治疗刺激。然而,μms技术具有固有的优点,使其对临床应用特别吸引力。具体地,μms在组织中引起焦电流,限制了激活的程度至几百微米。我们最近证明了使用μms在体外引发神经元激活的可行性[1],以及激活神经元电路的可能性在啮齿动物中的系统水平[2]。由于μms是一种新颖的技术,其神经激活,诱导的场特征和最佳拓扑特征的机制尚未探索。在这方面,数值模拟发挥着至关重要的作用,因为它们提供了对诱导电场的空间分布的洞察,这反过来决定神经刺激的动态。在这里,我们报告数值模拟的结果以预测不同μms几何形状的神经刺激性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号