首页> 外文会议>Southern Biomedical Engineering Conference >Nanostructured Biopolymer-Microglial Cell Implants for Spinal Cord/CNS Repair
【24h】

Nanostructured Biopolymer-Microglial Cell Implants for Spinal Cord/CNS Repair

机译:用于脊髓/ CNS修复的纳米结构生物聚合物 - 微胶质细胞植入物

获取原文

摘要

There are no clinically effective therapies for repair of spinal cord damage and other injuries to CNS tissues. More than 250,000 are affected, with 10,000 new injuries annually in the U.S. and about 50% are paraplegic or quadriplegic. Annual health care costs exceed $10 billion. Tissue engineering concepts using various polymer scaffolds and nerve tissue growth factors have been problematic clinically. Reported here are results from a unique multidisciplinary program at the University of Florida involving investigators from the College of Engineering and the College of Medicine. Research has encompassed the synthesis, characterization, and in vivo evaluation (including noninvasive high field MRI) of biodegradable implants comprising composite structures of microglial cells in a porous alginate and/or DNA matrix with phospholipid nanosurface modification. Microglia are the natural CNS repair cells. The strategy employed in this study was to develop composite cell-polymer structures designed to facilitate the complex sequencing of biosynthesis and regulation of natural neurotophic factors which enable the CNS repair processes and stimulate the growth of neural networks. In a rat spinal cord injury model, effective wound healing and neural regeneration was demonstrated without cystic cavity complications. Preclinical studies are aimed at optimizing cell-polymer compositions, implant design, and surgical protocols for such implants to minimize scarring and enhance functional neuromuscular recovery.
机译:没有临床有效的疗法,用于修复脊髓损伤和其他对CNS组织的伤害。超过250,000人受到影响,美国每年每年有10,000名新伤害,约50%是截瘫或四十次。年度医疗费用超过100亿美元。使用各种聚合物支架和神经组织生长因子的组织工程概念在临床上存在问题。这里报告的是佛罗里达大学的独特多学科计划涉及来自工程学院和医学院的调查人员。研究包括可生物降解的植入物的合成,表征和体内评价(包括非侵入性高场MRI),其包括多孔藻酸盐和/或DNA基质中的微胶质细胞的复合结构,具有磷脂纳米面表面改性。微胶质细胞是天然CNS修复细胞。本研究所采用的策略是开发复合细胞 - 聚合物结构,该结构旨在促进生物合成的复序和天然神经缺乏因素的调节,使CNS修复过程能够刺激神经网络的生长。在大鼠脊髓损伤模型中,证明了有效的伤口愈合和神经再生,没有囊性腔并发症。临床前研究旨在优化细胞 - 聚合物组合物,植入物设计和手术方案,用于这些植入物,以最小化瘢痕突,并增强功能性神经肌肉恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号