首页> 外文会议>Annual SEMI Advanced Semiconductor Manufacturing Conference >An Effective Problem Decomposition Method for Scheduling of Diffusion Processes Based on Mixed Integer Linear Programming
【24h】

An Effective Problem Decomposition Method for Scheduling of Diffusion Processes Based on Mixed Integer Linear Programming

机译:一种有效的问题分解方法,用于基于混合整数线性规划的扩散过程调度

获取原文

摘要

Diffusion processes in semiconductor fabrication facilities (Fabs) usually refer to the series of processes from wafer cleaning processes to furnace processes. Most furnace tools are batch tools with large batch sizes and have relatively long process times when compared to the other processes. Strict time window constraints link cleaning processes with furnace processes for quality control. Those operational requirements for diffusion processes make their scheduling very difficult. This paper proposes an advanced scheduling approach based on a rolling horizon scheduling concept. Due to the combinatorial nature of the scheduling problem, the complexity of the problem increases exponentially when the number of jobs and tools increase. However, the computation time allowed for the scheduler is limited in practice, because the variability in most fabs requires schedulers to update the schedule in short intervals. We suggest an MILP (Mixed Integer Linear Programming) model for diffusion processes and propose an effective decomposition method to deal with this complexity problem. The decomposition method repeats multiple scheduling iterations as it gradually extends the number of runs on tools enabling the scheduler to generate near-optimal schedules in limited time intervals. The scheduler could make large improvements on KPIs such as queue time violation rates, batch sizes, throughput, etc. The software architecture of the scheduler implementation is also addressed in this paper.
机译:半导体制造设施(Fabs)中的扩散过程通常是指从晶片清洁工艺到炉过程的一系列过程。大多数炉子工具是具有大批量尺寸的批量工具,与其他工艺相比,具有相对较长的处理时间。严格的时间窗口约束链接清洁工艺与炉子工艺进行质量控制。这些扩散过程的操作要求使其调度非常困难。本文提出了一种基于滚动地平线调度概念的高级调度方法。由于调度问题的组合性质,当作业和工具的数量增加时,问题的复杂性会呈指数级增长。然而,调度器允许的计算时间在实践中有限,因为大多数FAB中的可变性需要调度器以短暂的间隔更新时间表。我们建议对扩散过程的MILP(混合整数线性编程)模型,并提出了一种有效的分解方法来处理这种复杂性问题。分解方法重复多个调度迭代,因为它逐渐扩展了在工具上运行的数量,使得调度器以有限的时间间隔生成近最佳时间表。调度程序可以对KPI进行大量改进,例如队列时间违规率,批量大小,吞吐量等。本文还解决了调度程序实现的软件架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号