首页> 外文会议>IEEE International Solid-State Circuits Conference >13.3 20nm High-density single-port and dual-port SRAMs with wordline-voltage-adjustment system for read/write assists
【24h】

13.3 20nm High-density single-port and dual-port SRAMs with wordline-voltage-adjustment system for read/write assists

机译:13.3 20NM高密度单端口和双端口SRAM,具有用于读/写助杆的字线 - 电压调节系统

获取原文

摘要

Scaling of process technology is inevitably accompanied by the increase of local variation in transistor characteristics, which has been deteriorating the operation margin of SRAM. This trend necessitates assist circuits for SRAM to increase the immunity against variations, and many papers in this area [1-4] have been published. In this paper, we present an assist circuit suitable for the SRAMs in 20nm generation. Figure 13.3.1 compares local variations of SRAM cell transistors, pass-gate NMOS (PG), pull-down NMOS (PD) and pull-up PMOS (PU) for 28 and 20nm, showing degradation as the process advances. Noticeably, the NMOS transistors become worse than PMOS, which causes degradation in SRAM operating margin since SRAM characteristics such as static noise margin (SNM) are more sensitive to NMOS than PMOS. Figure 13.3.1 also shows the operational window enclosed by read and write immunity against local variations in 28 and 20nm. This indicates assist circuits must perform beyond the level established in previously published work to address SRAM variation in advanced technology nodes. Lowering wordline (WL) voltage level is one of the read-assist approaches. Lowering the supply voltage of PU in a cell (ARVDD) and negative bitline (BL) techniques are known to be effective for the write operation. These techniques, however, have side-effects: lowering the WL voltage degrades write margin and lowering ARVDD leads to higher power consumption and a long cycle-time. Furthermore, the negative BL technique can cause write errors in non-selected columns. Thus, it is necessary to select which assist technique should be applied depending on each process technology. In addition, the SRAM used in production generally include single-port SRAM (SP-SRAM) and dual-port SRAM (DP-SRAM), so the assist circuits to be applied should be effective for whole SRAM family.
机译:过程技术的缩放不可避免地伴随着晶体管特性的局部变化的增加,这一直劣化SRAM的操作余量。这一趋势需要辅助SRAM的辅助电路,以增加对抗争性的免疫力,并且该领域的许多论文已发表。在本文中,我们提出了一种适用于20nm代的SRAM的辅助电路。图13.3.1比较了SRAM单元晶体管,通栅NMOS(PG),下拉NMOS(PD)和上拉PMOS(PU)的局部变型28和20nm,显示出降低作为过程的进步。明显的是,NMOS晶体管变得比PMOS更差,因为SRAM特性如静电噪声裕度(SNM)的SRAM特性比PMOS更敏感,导致SRAM工作余量的降低。图13.3.1还显示了通过读取和写入免疫封闭的操作窗口,而在28和20nm中的局部变化。这表示辅助电路必须超出在前发布的工作中建立的水平,以解决高级技术节点的SRAM变化。降低字线(WL)电压电平是读取辅助方法之一。已知降低电池(ARVDD)和负位线(BL)技术中的PU的电源电压对写操作有效。然而,这些技术具有副作用:降低WL电压降低写裕度并降低ARVDD导致更高的功耗和长期循环时间。此外,负BL技术可能导致未选择的列中的写入错误。因此,需要根据每个过程技术选择应采用哪种辅助技术。此外,生产中使用的SRAM通常包括单端口SRAM(SP-SRAM)和双端口SRAM(DP-SRAM),因此应用的辅助电路应该对整个SRAM系列有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号