首页> 外文会议>International congress on advances in nuclear power plants >GASEOUS FISSION PRODUCT MANAGEMENT FOR MOLTEN SALT REACTORS AND VENTED FUEL SYSTEMS
【24h】

GASEOUS FISSION PRODUCT MANAGEMENT FOR MOLTEN SALT REACTORS AND VENTED FUEL SYSTEMS

机译:食盐反应器和排气系统的气态裂变产物管理

获取原文

摘要

Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. ~(135)Xe t_(1/2)=9.14 hours and ~(85)Kr t_(1/2)=10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F_4 (22 mole percent) with a heavy nuclide composition of 3.86% ~(233)U and 96.14% ~(232)Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydrofracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options for disposal of fission gas wastes. In each option, lithostatic pressure, a kilometer or more underground, eliminates the pressure driving force for noble gas release and dissolves any untrapped gas in deep groundwater or into incorporated solid waste forms. The options, challenges, and potential for these methods to dispose of gaseous fission products are described. With this research, we hope to help both MSRs and other advanced reactors come one step closer to commercialization.
机译:裂变气体处理是熔融盐反应堆(MSR)和带有排气燃料系统的先进反应堆的未解决难题之一。随着这些系统的运行,它们会产生许多氙和k的放射性同位素(例如〜(135)Xe t_(1/2)= 9.14小时和〜(85)Kr t_(1/2)= 10.73年)。事实证明,除去这些气体对于这种反应器设计的成功至关重要,原因有二。首先,这些气体起着较大的中子吸收器的作用,从而降低了反应性,必须通过增加燃料负荷来加以抵消。其次,对于MSR,惰性裂变产物气体自然会与高温盐快速分离,从而产生高蒸气压,这带来了安全隐患。对于使用固体排放燃料的先进反应堆,允许气体逸出到废气系统中,因此必须进行管理。由于在通风的燃料系统中裂变产物气体传输的时间延迟,一些寿命较短的放射性核素将衰减掉,从而相对于MSR减少了裂变气体源项。为了计算典型熔盐反应堆的裂变气源项,我们对一个1000 MWe石墨缓和的MS MSR进行了建模,类似于Mathieu等人的论文。 [1]。在这些计算中使用的燃料盐为LiF(78摩尔%)-(HN)F_4(22摩尔%),重核素组成按质量计为3.6%〜(233)U和96.14%〜(232)Th。在我们可以除去这种反应堆配置所产生的裂变产物气体之前,我们必须首先开发适当的存储机制。气体可以储存在压力容器中,但是必须注意瓶子的故障。将稀有气体捕获在基质中的方法既昂贵又复杂。另外,还有直接的存储/处置选项:直接注入地球或将基于灌浆的产品注入地球。钻探技术,水力压裂技术和从化石燃料厂中分离二氧化碳的方法的进步为处置裂变气体废物创造了新的选择。在每种选择中,地下一公里或更长的岩石静压力消除了释放稀有气体的压力驱动力,并将未捕集的气体溶解在深层地下水或固体废物形式中。描述了这些方法处理气态裂变产物的选择,挑战和潜力。通过这项研究,我们希望帮助MSR和其他先进反应堆向商业化迈进一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号