首页> 外文会议>ASME/JSME thermal engineering joint conference;AJTEC2011 >Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations
【24h】

Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations

机译:两相微通道散热器:理论,应用和局限性

获取原文

摘要

Boiling water in small channels that are formed along turbine blades has been examined since the 1970s as a means to dissipating large amounts of heat. Later, similar geometries could be found in cooling systems for computers, fusion reactors, rocket nozzles, avionics, hybrid vehicle power electronics, and space systems. This paper addresses (a) the implementation of two-phase micro-channel heat sinks in these applications, (b) the fluid physics and limitations of boiling in small passages, and effective tools for predicting the thermal performance of heat sinks, and (c) means to enhance this performance. It is shown that despite many hundreds of publications attempting to predict the performance of two-phase micro-channel heat sinks, there are only a handful of predictive tools that can tackle broad ranges of geometrical and operating parameters or different fluids. Development of these tools is complicated by a lack of reliable databases and the drastic differences in boiling behavior of different fluids in small passages. For example, flow boiling of certain fluids in very small diameter channels may be no different than in macro-channels. Conversely, other fluids may exhibit considerable 'confinement' even in seemingly large diameter channels. It is shown that cutting-edge heat transfer enhancement techniques, such as the use of nano-fluids and carbon nanotube coatings, with proven merits to single-phase macro systems, may not offer similar advantages to micro-channel heat sinks. Better performance may be achieved by careful optimization of the heat sink's geometrical parameters and by adapting a new class of hybrid cooling schemes that combine the benefits of micro-channel flow with those of jet impingement.
机译:自1970年代以来,一直在研究沿着涡轮机叶片形成的小通道中的沸腾水,作为散发大量热量的一种手段。后来,在用于计算机,聚变反应堆,火箭喷嘴,航空电子,混合动力汽车动力电子设备和空间系统的冷却系统中发现了类似的几何形状。本文讨论了(a)在这些应用中两相微通道散热器的实现,(b)小通道中的流体物理特性和沸腾的局限性以及预测散热器热性能的有效工具,以及(c )表示增强此效果。结果表明,尽管有成百上千的出版物试图预测两相微通道散热器的性能,但是只有少数的预测工具可以解决各种几何和工作参数或不同流体的问题。这些工具的开发由于缺乏可靠的数据库以及小通道中不同流体的沸腾行为的巨大差异而变得复杂。例如,某些流体在非常小直径的通道中的沸腾可能与在大通道中的沸腾没有什么不同。相反,即使在看似大直径的通道中,其他流体也可能表现出相当大的“限制”。结果表明,先进的传热增强技术(例如使用纳米流体和碳纳米管涂层)具有对单相宏观系统的公认优点,可能无法提供与微通道散热器类似的优势。通过仔细优化散热器的几何参数并采用将微通道流动与射流撞击的优点相结合的新型混合冷却方案,可以实现更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号