首页> 外文会议>European Conference on Fracture >A comparison of the fatigue and fracture behavior of high strength ultrafine grained medium carbon steel SAE 1045 with high strength bearing steel SAE 52100
【24h】

A comparison of the fatigue and fracture behavior of high strength ultrafine grained medium carbon steel SAE 1045 with high strength bearing steel SAE 52100

机译:高强度超细颗粒中碳钢SAE 1045疲劳和断裂行为比较高强度轴承钢SAE 52100

获取原文

摘要

Ultrafine-grained metals feature very good mechanical properties like high hardness, high ultimate tensile strength, and a high fatigue limit, though all these properties are mostly reported for ultrafine-grained metals other than steels. Here we show fatigue results of ultrafine grained SAE 1045, which was produced by High Pressure Torsion (HPT), exhibiting significantly increased fatigue limits as compared to conventionally grained SAE 1045. Apart from applying the appropriate HPT-treatment it is also essential to use special carbide morphology in the initial state before HPT to reach high fatigue limit. Therefore we used SAE 1045 in normalized, spheroidized, tempered, and patented states. In our investigation the patented microstructure led to a degree of hardness and a fatigue limit equivalent to those of austempered SAE 52100, while the other carbide morphologies in SAE 1045 led to significantly lower fatigue limits. Morphology and crack initiation mechanisms were changed by severe plastic deformation. The fracture surfaces revealed mostly flat fatigue fracture surfaces with crack initiation at the surface or, more often, at non-metallic inclusions beneath the surface. All patented SAE 1045 as well as austempered SAE 52100 specimens failed from nonmetallic inclusions but with different features in the very long life time regime. While the bearing steel SAE 52100 showed fine granular areas (FGAs) around the crack initiation inclusions the ultrafine grained patented SAE 1045 did not produce these FGAs around the inclusions. This significant difference in failure mechanism in long fatigue life can be explained with the help of an analysis of the stress intensity factors of the crack initiating inclusions in both steels: the development of FGAs in SAE 52100 only acts around inclusions when the stress intensity factor at those inclusions is below the classical threshold value of long cracks. In this case a FGA is formed at the inclusions and reduces the threshold value, with the consequence that a fatigue crack starts from the inclusion with FGA and leads to failure. In contrast, the microstructure of the patented SAE 1045 is already ultrafine grained by HPT before fatigue loading so the threshold value for crack growth is lower than in austempered SAE 52100. Therefore in the ultrafine grained microstructure long cycle fatigue failure occurs without formation of FGAs around nonmetallic inclusions.
机译:超细颗粒金属具有非常好的机械性能,如高硬度,高终极拉伸强度和高疲劳极限,尽管所有这些性质主要报道了钢的超细粒子金属。在这里,我们显示超细颗粒SAE 1045的疲劳结果,其通过高压扭转(HPT)产生,与传统粒度1045相比,表现出显着提高的疲劳局限性。除了施加适当的HPT治疗,它也必须使用特殊HPT前初始状态下的碳化物形态达到高疲劳极限。因此,我们在归一化,球化,回火和专利状态下使用SAE 1045。在我们的研究中,专利的微观结构导致了一定程度的硬度和与奥氏体的SAE 52100相同的疲劳极限,而SAE 1045中的其他碳化物形态导致显着降低疲劳限制。通过严重的塑性变形改变了形态和裂纹启动机制。断裂表面揭示了在表面下方的裂纹引发的扁平疲劳裂缝表面,或者更经常地在表面下的非金属夹杂物处。所有专利的SAE 1045以及奥氏体的SAE 52100样本都失败了非金属夹杂物,而是在非常长的寿命时间内具有不同的特征。虽然轴承钢SAE 52100在裂纹引发夹杂物周围显示细粒状区域(FGA),但超细粒状专利SAE 1045没有在夹杂物周围产生这些FGA。长疲劳寿命中失效机制的这种显着差异可以通过分析在两个钢中的裂缝引发夹杂物的应力强度因子的帮助下解释:在应力强度因子时,SAE 52100中的FGA的开发仅在夹杂物周围起作用这些夹杂物低于长裂缝的经典阈值。在这种情况下,在夹杂物处形成FGA并降低阈值,结果是疲劳裂缝从包含FGA的夹杂物开始并导致故障。相反,获得专利的SAE 1045的微观结构已经通过HPT沉淀,在疲劳负载之前粒子粒度,因此裂纹生长的阈值低于奥氏体的SAE 52100。因此,在超细颗粒微观结构的长循环疲劳失败,而不形成FGA非金属夹杂物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号