首页> 外文会议>Conference on remote sensing of clouds and the atmosphere >A Representation of a Multiple Scattering Lidar Return from Layers of Clouds by a Multi-dimensional Distribution Characterizing the Contributions of the Diffusion of the Emitted Beam
【24h】

A Representation of a Multiple Scattering Lidar Return from Layers of Clouds by a Multi-dimensional Distribution Characterizing the Contributions of the Diffusion of the Emitted Beam

机译:通过多维分布从云层从云层返回的多个散射激光雷达的表示,其特征在于发射光束扩散的贡献

获取原文

摘要

For good visibility lidar return signals may be analysed using the classical lidar equation which describes the single scattering contribution only. Here the range, from which a contribution to the return signal comes, is proportional to the time difference between emission and reception. For dense cloud sensing with a ground-based lidar or for a spaceborne lidar system, the return signal contains also essential contributions from higher orders of multiple scattering. In this case the physical range or the distance along the emitted beam, from which the contribution comes, is no longer proportional to the time elapsed since emission. The elapsed time is only proportional to the photon path-length. Thus making the analysis of the return signal much more difficult. Which part of the return signal comes from what range and, hence, from which type of scatterers? The diffusion process of multiple scattering of light in the atmosphere is non-isotropic and extremely complicated. The key to the solution of the problem is the simulation of multiple scattering lidar returns where the separate orders of scattering are tracked. Such information about the diffusion of the laser beam is needed to give a better understanding of the extend of contribution from the type of scatterers to the return signal. In this paper, we offer such a non-trivial analysis of the diffusion of the laser beam in the cloud modeled by two kinds of atmospheric particles, i.e., aerosols and ice crystals, by using a multi-dimensional contribution distribution for different orders of scattering. This is done by conditioning the probability of return e.g. by the time elapsed, the order of scattering, the distance from the axis of the direction of emission, and the distance of the projection of the point of contribution on this axis to the emitter. This gives a fairly complete information about the diffusion process as it is seen from the receiver.
机译:对于良好的可见性,利用LIDAR返回信号可以使用描述单个散射贡献的经典激光雷达方程来分析。这里,对返回信号的贡献来的范围是与发射和接收之间的时间差成比例。对于使用地面延长座或用于太空激光雷达系统的密集云感测,返回信号也包含来自多个散射较高令的必要贡献。在这种情况下,物理范围或沿着发射光束的距离,从中贡献到来,从发射以来经过的时间不再比例。经过的时间仅与光子路径长度成比例。从而使返回信号的分析更加困难。返回信号的哪一部分来自哪个范围,因此,从哪种类型的散射体?大气中光的多次散射的扩散过程是非各向同性的并且非常复杂。解决问题的关键是对多个散射LIDAR的仿真返回,其中跟踪单独的散射令。需要关于激光束的扩散的这种信息,以便更好地了解从散射仪的类型到返回信号的贡献的延伸。在本文中,我们通过使用多维贡献分布为不同的散射顺序(即,通过多维贡献分布提供对由两种大气颗粒(即气溶胶和冰晶)建模的云中的激光束的扩散的这种非差异分析。这是通过调节返回的概率来完成的。当经过的时间,散射的顺序,从发射方向的轴线的距离,以及将该轴的贡献点的投影距离到发射器。这给出了关于从接收器看到的扩散过程的相当完整的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号