首页> 外文会议>ASME(American Society of Mechanical Engineers)/JSME(Japanese Society of Mechanical Engineers) Thermal Engineering Summer Heat Transfer Conference 2007 >UNDERSTANDING HIGH HEAT TRANSFER IN SPRAY COOLING FOR DIFFERENT DROPLET VELOCITIES AND WALL SUPERHEATS BY 3D MULTIPHASE FLOW MODELING
【24h】

UNDERSTANDING HIGH HEAT TRANSFER IN SPRAY COOLING FOR DIFFERENT DROPLET VELOCITIES AND WALL SUPERHEATS BY 3D MULTIPHASE FLOW MODELING

机译:通过3D多相流建模了解不同液滴速度和壁过热的喷雾冷却中的高传热

获取原文

摘要

Spray cooling with phase change has the advantage of relatively large amount of heat transfer from the hot surface of many power electronics system. In our previous works in 2-D model of spray cooling, the importance of moving the cooler liquid quickly to heated dry surface which causes the high heat flux due to transient conduction is recognized to be the main reason for high heat transfer. In reality the phenomena of spray cooling are three dimensional in nature. The major draw back in extending the 2-D model to 3-D model is huge computing time in serial computer. Here the 3-D model is developed in parallel computing environment to reduce the turn around time. The 3-D multiphase model used here considers the effect of surface tension between liquid and vapor, gravity, phase change and viscosity. The level set method is used to capture the movement of the liquid vapor interface. The governing equations of multiphase flow are solved using the finite difference method. In this work the spray cooling phenomena is studied in 3-D multiphase model where a vapor bubble is growing in a thin liquid film on a hot surface and a droplet is impacting on the thin liquid film. This study has been done for different droplet velocities and for different wall superheats with our 3-D multiphase model to understand the high heat removal mechanism in spray cooling for different velocities and wall superheat situations.
机译:具有相变的喷雾冷却的优点是,从许多电力电子系统的热表面传出相对大量的热量。在我们先前在喷雾冷却的二维模型中的工作中,将较冷的液体快速移至加热的干燥表面(由于瞬态传导导致高热通量)的重要性被认为是高热传递的主要原因。实际上,喷雾冷却现象本质上是三维的。将2D模型扩展为3D模型的主要缺点是串行计算机上的计算时间很长。在这里,在并行计算环境中开发了3-D模型,以减少周转时间。这里使用的3-D多相模型考虑了液体和蒸气之间的表面张力,重力,相变和粘度的影响。水平设置方法用于捕获液体蒸气界面的运动。使用有限差分法求解多相流的控制方程。在这项工作中,在3-D多相模型中研究了喷雾冷却现象,在该模型中,汽泡在热表面上的薄液膜中生长,而液滴则撞击在该薄液膜上。使用我们的3-D多相模型针对不同的液滴速度和不同的壁过热进行了这项研究,以了解在不同速度和壁过热情况下喷雾冷却中的高除热机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号