【24h】

MODELING AND CHARACTERIZATION OF LASER DRILLING OF SMALL HOLES ON METAL SHEETS

机译:金属薄板上小孔激光钻孔的建模与表征

获取原文
获取原文并翻译 | 示例

摘要

Laser drilling is increasingly being used in fabrication of small components in various materials with applications in aerospace, automotive, electronics and medical industries, and it offers a unique combination of benefits for the contemporary manufacturing industry as a rapid, precise, clean, flexible, and efficient process. Laser drilling involves a stationary laser beam which uses its high power density to melt or vaporize material from the workpiece, and the process is governed by an energy balance between the irradiating energy from the laser beam, the conduction heat into the workpiece, the energy losses to the environment, and the energy required for phase change in the workpiece. There are three major mechanisms of removal of material from the beam interaction zone and consequent propagation of the melt front into the metal bulk. They are melt ejection due to interaction between the melt and an assisting gas, melt ejection by the vaporization-induced recoil force, and melt evaporation. The results of laser drilling processes, such as the profile of the heat affected zone (HAZ) and the geometry of the holes, strongly depend on settings of the laser parameters such as peak power, pulse length, pulse repetition rate, number of pulses, focal condition, etc. In addition, the processing results are strongly influenced by geometrical and material properties of the workpiece. This paper presents theoretical and experimental studies of laser drilling of micrometer size holes on metal sheets using a pulsed Nd:YAG laser. A model of the temperature distribution and the motion of the melting front for laser drilling is presented and compared with experimental data. Effects of laser parameters on the resultant geometry of the hole are investigated and summarized, and an optimum procedure for laser drilling of small holes on metal sheets is outlined.
机译:激光钻孔正越来越多地用于制造各种材料的小型零件,并应用于航空航天,汽车,电子和医疗行业,并且它以快速,精确,清洁,灵活和经济的方式为当代制造业提供了独特的优势组合。高效的过程。激光钻孔涉及固定的激光束,该激光束利用其高功率密度来熔化或汽化工件上的材料,并且该过程受激光束的辐射能量,进入工件的传导热以及能量损失之间的能量平衡控制。到环境,以及工件中相变所需的能量。存在三种主要的从束相互作用区去除材料并因此将熔体前沿传播到金属块中的机理。它们是由于熔体和辅助气体之间的相互作用而产生的熔体喷射,通过汽化引起的反冲力进行的熔体喷射以及熔体蒸发。激光钻孔过程的结果(例如热影响区(HAZ)的轮廓和孔的几何形状)在很大程度上取决于激光参数的设置,例如峰值功率,脉冲长度,脉冲重复率,脉冲数,此外,加工结果还受工件的几何和材料特性的强烈影响。本文介绍了使用脉冲Nd:YAG激光在金属板上对微米级孔进行激光打孔的理论和实验研究。提出了激光钻孔温度分布和熔化前沿运动的模型,并与实验数据进行了比较。研究和总结了激光参数对孔的最终几何形状的影响,并概述了在金属板上激光钻孔的最佳步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号