首页> 外文会议>International Symposium on Fundamentals of Computation Theory >What One Has to Know When Attacking P vs. NP (Extended Abstract)
【24h】

What One Has to Know When Attacking P vs. NP (Extended Abstract)

机译:攻击P对NP时必须知道的内容(扩展摘要)

获取原文

摘要

Mathematics was developed as a strong research instrument with fully verifiable argumentations. We call any consistent and sufficiently powerful formal theory that enables to algorithmically verify for any given text whether it is a proof or not algorithmically verifiable mathematics (AV-mathematics for short). We say that a decision problem L ⊆ ∑~* is almost everywhere solvable if for all but finitely many inputs x ∈ ∑~* one can prove either 'x ∈ L' or 'x ∈ L' in AV-mathematics. First, we formalize Rice's theorem on unprovability, claiming that each nontrivial semantic problem about programs is not almost everywhere solvable in AV-mathematics. Using this, we show that there are infinitely many algorithms (programs that are provably algorithms) for which there do not exist proofs that they work in polynomial time or that they do not work in polynomial time. We can prove the same also for linear time or any time-constructible function. Note that, if P ≠ NP is provable in AV-mathematics, then for each algorithm A it is provable that 'A does not solve SATISFIABILITY or A does not work in polynomial time'. Interestingly, there exist algorithms for which it is neither provable that they do not work in polynomial time, nor that they do not solve SATISFIABILITY. Moreover, there is an algorithm solving SATISFIABILITY for which one cannot prove in AV-mathematics that it does not work in polynomial time. Furthermore, we show that P = NP implies the existence of algorithms X for which the true claim 'X solves SATISFIABILITY in polynomial time' is not provable in AV-mathematics. Analogously, if the multiplication of two decimal numbers is solvable in linear time, one cannot decide in AV-mathematics for infinitely many algorithms X whether 'X solves multiplication in linear time'. Finally, we prove that if P vs. NP is not solvable in AV-mathematics, then P is a proper subset of NP in the world of complexity classes based on algorithms whose behavior and complexity can be analyzed in AV-mathematics. On the other hand, if P = NP is provable, we can construct an algorithm that provably solves SATISFIABILITY almost everywhere in polynomial time.
机译:数学是作为具有充分可验证论据的强大研究工具而开发的。我们称呼任何一致且足够强大的形式理论,该理论能够对任何给定的文本进行算法验证,以证明这是否是算法可验证的数学(简称AV-mathematics)。我们说一个决策问题L⊆∑〜*几乎到处都是可解决的,只要有限输入x∈∑〜*以外的所有输入都可以在AV数学中证明“ x∈L”或“ x∈L”。首先,我们对赖斯关于不可证明性的定理进行形式化,声称关于程序的每个非平凡的语义问题在视听数学中并不是到处都能解决的。使用此方法,我们证明了有无数种算法(程序是可证明的算法),对于这些算法,不存在证明它们在多项式时间内起作用或它们在多项式时间内不起作用的证据。对于线性时间或任何时间可构造函数,我们也可以证明相同。请注意,如果在AV数学中证明P≠NP,则对于每种算法A,都可以证明“ A不能解决可满足性或A在多项式时间内不起作用”。有趣的是,存在既不能证明它们不能在多项式时间内工作,又不能解决可满足性的算法。此外,存在一种解决可满足性的算法,该算法无法在AV数学中证明它不能在多项式时间内起作用。此外,我们证明P = NP表示存在算法X,对于该算法X,真正的主张“ X解决多项式时间内的可满足性”在AV数学中无法得到证明。类似地,如果两个小数的乘法可以在线性时间内求解,则无法在无穷多个算法X的AV数学中确定“ X是否在线性时间内求解乘法”。最后,我们证明,如果在AV数学中无法解决P与NP的问题,那么根据算法的行为和复杂度可以在AV数学中进行分析的算法,P是复杂度类别中NP的适当子集。另一方面,如果P = NP是可证明的,我们可以构造一个算法,该算法可在多项式时间内几乎在任何地方证明可满足性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号