首页> 外文会议>Enzyme engineering XXIV >NEW INSIGHTS IN BACILLUS SUBTILLIS LEVANSUCRASE MECHANISM AND APPLICATIONS
【24h】

NEW INSIGHTS IN BACILLUS SUBTILLIS LEVANSUCRASE MECHANISM AND APPLICATIONS

机译:芽孢杆菌沙门氏菌病发生机制的新认识与应用

获取原文
获取原文并翻译 | 示例

摘要

B. subtilis levansucrase (SacB) is a widely studied glycoside hydrolase from Family 68 family. Although reports on SacB properties date back to the 70's (Chambert & Gonzy-Treboul, 1976), questions regarding levan synthesis mechanism are still open. These questions refer to the factors influencing reaction specificity, including the effect of sucrose and levan hydrolysis, product structure and levan molecular weight. In this conference we review recent findings regarding the modulating effect of SacB concentration on levan molecular weight distribution (Porras-Dominguez et al., 2015; Raga-Carbajal et al., 2016). In effect, we demonstrated that high enzyme concentrations (>1.0 μM), direct levan synthesis exclusively to low molecular weight products (av 7.6 KDa), while low enzyme concentrations (< 0.1μM) favor the synthesis of a high molecular weight levan fraction (>2000 kDa). From a detailed HPAEC-PAD analysis of product evolution, a shift from a clear non-processive elongation mechanism at high protein concentrations to a -most likely- processive mechanism when low protein concentrations are used in the reaction. Trough calorimetric experiments we demonstrate that these changes in enzyme performance do not involve protein-protein interactions (Raga-Carbajal et al., 2016). We demonstrated, through an extensive characterization of the levan hydrolysis reaction by SacB, that the wide diversity of products derives also from fructosyl transfer to free sugars available from sucrose and levan hydrolysis. Actually, levan is an efficient fructosyl donor for fructosylation reactions, in which FOS such as levanbiose, inulobiose, blastose, are formed (Mendez-Lorenzo et al., 2015). The efficiency of SacB fructosylation with levan as donor was applied for the synthesis of blastose, a sucrose analogue with potential prebiotic properties. For this reaction, fructose was transferred to trehalose to produce a ()()(2-6) fructosylated trehalose, which was later hydrolysed by trehalase to yield blastose (Miranda-Molina et al, 2017). Up to now there is not an efficient enzyme for the synthesis of levan-type FOS, in spite of intensive efforts to modify SacB or other levansucrases specificity by site directed mutagenesis. For this purpose, after a complete characterization of a combined bi-enzymatic reaction between SacB and an endolevanase produced by B.licheniformis. (LevB_1) (Porras-Dominguez et al., 2014) we designed a fusion enzyme containing both activities. This fusion enzyme is able to produce levan-type FOS from sucrose, with molecular weights in the range of DP2 to DP10 including mainly 1-kestose, 6-kestose, neokestose, levanbiose and blastose, with 40% w/w yields.
机译:枯草芽孢杆菌蔗糖酶(SacB)是来自68族的广泛研究的糖苷水解酶。尽管有关SacB特性的报道可以追溯到70年代(Chambert&Gonzy-Treboul,1976),但有关levan合成机制的问题仍未解决。这些问题涉及影响反应特异性的因素,包括蔗糖和莱文水解作用,产物结构和莱文分子量。在这次会议上,我们回顾了有关SacB浓度对Levan分子量分布的调节作用的最新发现(Porras-Dominguez等人,2015; Raga-Carbajal等人,2016)。实际上,我们证明了高酶浓度(> 1.0μM),直接将levan合成直接合成为低分子量产物(av 7.6 KDa),而低酶浓度(<0.1μM)则有利于合成高分子量levan馏分( > 2000 kDa)。从对产品进化的详细HPAEC-PAD分析可以看出,从高蛋白质浓度下的清晰非加工性延伸机理转变为当反应中使用低蛋白质浓度时最有可能的加工机理。通过量热实验,我们证明了酶性能的这些变化不涉及蛋白质-蛋白质相互作用(Raga-Carbajal等人,2016)。通过SacB对莱文水解反应的广泛表征,我们证明了产物的广泛多样性也源于果糖基转移至可从蔗糖和莱文水解获得的游离糖中。实际上,levan是果糖基化反应的有效果糖基供体,其中形成了果糖二糖,inulobiose,blastose等FOS(Mendez-Lorenzo等人,2015)。以莱万作为供体的SacB果糖基化的效率可用于合成果糖,一种具有潜在益生元特性的蔗糖类似物。对于该反应,将果糖转移到海藻糖中生成()()(2-6)果糖基化的海藻糖,然后将其通过海藻糖酶水解以产生果糖(Miranda-Molina等人,2017)。迄今为止,尽管通过定点诱变努力修饰SacB或其他糖蔗糖酶特异性,但仍没有用于合成levan型FOS的有效酶。为此,在完全鉴定了SacB与地衣芽孢杆菌产生的内切酶之间的联合双酶反应后。 (LevB_1)(Porras-Dominguez等,2014),我们设计了一种同时具有两种活性的融合酶。该融合酶能够从蔗糖产生左旋型FOS,分子量在DP2至DP10的范围内,主要包括1-koseose,6-kestose,neokestose,levanbiose和blastose,产率为40%w / w。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号