首页> 外文会议>Enzyme engineering XXIV >THE FOURTH DIMENSION: ACCOUNTING FOR DYNAMICS WHEN ENGINEERING ENZYMES
【24h】

THE FOURTH DIMENSION: ACCOUNTING FOR DYNAMICS WHEN ENGINEERING ENZYMES

机译:第四维度:工程酶的动力学核算

获取原文
获取原文并翻译 | 示例

摘要

Despite key advances in enzyme engineering, our capacity to predict the effects of mutations on function remains nebulous. A central consideration in our incapacity to predict sequence-function relationships is the fact that proteins are dynamic, yet we rarely treat them as such. We will present methods to include dynamics in enzyme engineering. In one example, we apply computational methods to cytochrome P450 enzyme systems, to predict the trajectory of ligand binding and entry into the active-site cavity. We apply the Implicit Ligand Sampling and Adaptive Biasing Force methods to successfully predict, using a single molecular dynamics simulation, all residues known to be important for fatty acid substrate binding in cytochrome P450 BM3, thus confirming predictive accuracy. In addition, a new binding residue was identified and experimentally confirmed, and a mechanism for evolutionary protection against CO poisoning is proposed. The simulations also allow accurate docking of diverse substrates, as opposed to standardly used docking methods that are based on a single crystal structure. Finally, we successfully identify the path of substrate entry in a cytochrome P450 that has a distinct substrate preference. These new computational biology approaches show great promise to aid in identifying functional hotspots for mutation . We will also examine the distinct dynamic properties exhibited by enzymes across diverse timescales of motions. Using the β-lactamase enzyme system, we examine the effects of sequence alterations on protein dynamics on a continuum of timescales ranging from rapid side-chain fluctuations to backbone displacements. Comparison of the CPMG NMR backbone dynamics and molecular dynamics simulations of several β-lactamases reveals them to be unusually rigid, with some motions centered about the active site region. Sequence changes upon recombination in the active-site area maintained dynamics on specific timescales yet altered the dynamics on other timescales, yet catalytic function was maintained. Our results indicate that B-lactamases are highly adaptable. Furthermore, we show that enzyme engineering need not preserve all native-like dynamics in order to maintain function.
机译:尽管酶工程学取得了重大进展,但我们预测突变对功能的影响的能力仍然模糊。我们无法预测序列功能关系的一个主要考虑因素是蛋白质是动态的,但我们很少如此对待它们。我们将介绍在酶工程中包括动力学的方法。在一个实例中,我们将计算方法应用于细胞色素P450酶系统,以预测配体结合和进入活性位点腔的轨迹。我们应用隐式配体采样和自适应偏向力方法,使用单个分子动力学模拟成功预测了所有已知对细胞色素P450 BM3中脂肪酸底物结合至关重要的残基,从而确认了预测准确性。另外,鉴定并实验证实了新的结合残基,并提出了针对CO中毒的进化保护机制。与基于单晶结构的标准使用的对接方法相反,仿真还允许各种基板的精确对接。最后,我们成功地确定了具有独特底物偏好的细胞色素P450中底物进入的路径。这些新的计算生物学方法显示出巨大的希望,有助于鉴定突变的功能热点。我们还将检查酶在各种运动时间尺度上表现出的独特动态特性。使用β-内酰胺酶系统,我们检查了连续时间范围内的序列变化对蛋白质动力学的影响,其范围从快速的侧链波动到骨架的位移。比较了CPMG NMR主链动力学和几种β-内酰胺酶的分子动力学模拟,发现它们具有异常的刚性,其中一些运动集中在活性位点区域。在活性位点区域重组后的序列变化在特定时间尺度上保持动力学,而在其他时间尺度上改变动力学,但催化功能得以维持。我们的结果表明,B-内酰胺酶具有很高的适应性。此外,我们表明酶工程不需要保留所有类似天然的动力学来维持功能。

著录项

  • 来源
    《Enzyme engineering XXIV》|2017年|19-19|共1页
  • 会议地点 Toulouse(FR)
  • 作者

    Joelle N. Pelletier;

  • 作者单位

    Department of Chemistry, Universite de Montreal;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号