【24h】

Equivalent Normal Stiffness of the Ball in Granular Dynamics

机译:颗粒动力学中球的等效法向刚度

获取原文
获取原文并翻译 | 示例

摘要

The outcome of any discrete granular system simulation and its validity depend, among other factors, on the model of the ball used. When the balls form clusters, the transfer of energy and momentum within this cluster as a result of collision can only be found by treating the cluster as an interconnected system. This poses a computational problem due to the incompatibility of time scales for dynamic processes in clusters and those for the detached balls. Any attempt to circumvent the problem of time scales by, for example, considering collisions as pairwise [1], may achieve computational efficiency at the expense of accuracy. The existence of different time scales reflects the physical phenomenon in discrete dynamical systems, while the error accumulation is a numerical phenomenon. The mathematical model of the ball affects both of these phenomena and thus the outcome and the validity of simulations. The interconnectivity between the balls in a cluster is, in addition to the ball model, another factor affecting the validity of simulations. The most popular approach to speed up the computations while taking into account the interactions in multi-ball systems is to treat each ball as disconnected from other balls in the system during a time step in numerical simulations. This approach is known as the distinct element method (DEM) [2] and the governing equations in this case are reduced to a decoupled system of equations. The decoupling is a system simplification. This factor was investigated in [3] using a string of balls as a sample system. Since the effect of system decoupling is independent from the ball model, for the purpose of this paper a system of balls will be treated as coupled. To investigate the effect of the normal stiffness model we consider t he s implest c luster of b alls, a c ollinear c hain o f balls touching each other and struck by a cue ball. We use it because it allows simple verification of energy and momentum conservation principles, and thus verification of the system and ball models and of the accuracy of numerical procedures. The properties of the ball that are of interest in this paper is the effect of ball's stiffness on accuracy. We investigate two ball models: one with nonlinear and another one with linearized contact stiffness properties. We introduce a concept of an equivalent linear stiffness and show that it allows reduction of accumulated error while preserving the energy and momentum conservation laws, and thus, as a result, an increase of the time step without loss of accuracy.
机译:除其他因素外,任何离散颗粒系统模拟的结果及其有效性都取决于所用球的模型。当球形成簇时,只有通过将簇视为互连系统,才能发现由于碰撞而在该簇内进行的能量和动量传递。由于集群中的动态过程和分离的球的动态过程的时间标度不兼容,因此造成了计算问题。通过例如将冲突视为成对[1]来规避时标问题的任何尝试都可能以准确性为代价实现计算效率。不同时标的存在反映了离散动力系统中的物理现象,而误差累积是一种数值现象。球的数学模型会影响这两种现象,从而影响模拟的结果和有效性。除球模型外,群集中球之间的互连性是影响模拟有效性的另一个因素。在考虑多球系统中的相互作用的同时,加快计算速度的最流行的方法是在数值模拟的时间步长中,将每个球视为与系统中其他球断开连接。这种方法称为独特元素法(DEM)[2],在这种情况下,控制方程简化为解耦方程组。去耦是系统的简化。在[3]中使用一串球作为样本系统研究了这个因素。由于系统解耦的效果与球模型无关,因此出于本文的目的,将球系统视为耦合系统。为了研究法向刚度模型的影响,我们考虑了球的最简单团簇,即相互接触并被母球撞击的直线形球。我们之所以使用它,是因为它允许简单地验证能量和动量守恒原理,从而验证系统和球模型以及数值程序的准确性。本文关注的球的特性是球的刚度对精度的影响。我们研究了两种球模型:一种具有非线性模型,另一种具有线性接触刚度特性。我们引入了等效线性刚度的概念,并表明它可以在保持能量和动量守恒定律的同时减少累积误差,因此,可以增加时间步长而不会降低精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号