首页> 外文会议>ASME international design engineering technical conferences and computers and information in engineering conference 2008 >Identification of Parameters in a System of Differential Equations Modeling Evolution of Infectious Diseases
【24h】

Identification of Parameters in a System of Differential Equations Modeling Evolution of Infectious Diseases

机译:建模传染病演化的微分方程系统中参数的识别

获取原文
获取原文并翻译 | 示例

摘要

The objective of this project was to perform an inverse parameter identification study to determine parameter values in a system of ten ordinary differential equations modeling the prediction of the evolutionary spread of syphilis. The goal was to predict infant mortality rates due to syphilis by using this model and match them to actual field data collected in the United States from 1900 to 1970. The syphilis model was developed by the UCLA Disease Modeling Group. The model involves 23 unknown user-specified parameters, each with specified maximum and minimum possible values. An accurate ordinary differential equation system integration algorithm was used to numerically integrate these equations.rnA hybrid evolutionary optimization algorithm was then used to iteratively find the proper values of the 23 unknown parameters by minimizing the difference between the predicted and the actual values of annual infant mortality rates due to syphilis. The parameters were originally treated as constants, meaning that they did not vary in time. During this study, they were also considered as time-dependent by modeling them as second degree polynomials. The sexually active population in the original model was assumed linearly increasing with time. To improve on the results, an eight term Fourier series fit was performed on the actual evolution of the sexually active population data during period 1900-1970. It was found that treating the 23 parameters as constants yielded an average fit of the infant mortality rates. By treating the parameters as time-dependent the fit still appeared average, but the variations of mortality during certain periods were captured more accurately.
机译:该项目的目的是进行反向参数识别研究,以在由十个常态微分方程组成的系统中确定参数值,该系统对梅毒的进化传播预测进行建模。目的是通过使用该模型预测由梅毒引起的婴儿死亡率,并将其与1900年至1970年在美国收集的实际现场数据相匹配。梅毒模型是由UCLA疾病建模小组开发的。该模型包含23个用户指定的未知参数,每个参数都有指定的最大和最小可能值。使用精确的常微分方程系统积分算法对这些方程进行数值积分。然后使用混合进化优化算法,通过最小化年婴儿死亡率的预测值与实际值之间的差异来迭代找到23个未知参数的合适值因梅毒而患病率。这些参数最初被视为常量,这意味着它们没有随时间变化。在这项研究中,通过将它们建模为二阶多项式,它们也被视为与时间有关。假定原始模型中的性活跃人口随时间呈线性增长。为了改善结果,对1900-1970年期间性活跃人口数据的实际演变进行了八项傅里叶级数拟合。已发现将23个参数视为常数可得出婴儿死亡率的平均拟合值。通过将参数视为与时间相关的参数,拟合仍然显示为平均值,但可以更准确地捕获某些时期内的死亡率变化。

著录项

  • 来源
  • 会议地点 New York NY(US);New York NY(US);New York NY(US);New York NY(US)
  • 作者单位

    Department of Mechanical and Materials Engineering Multidisciplinary Analysis, Inverse Design, Robust Optimization and Control (MAIDROC) Lab., EC 3474 Florida International University 10555 West Flagler Street, Miami, FL 33174, U.S.A.;

    Department of Mechanical and Materials Engineering Multidisciplinary Analysis, Inverse Design, Robust Optimization and Control (MAIDROC) Lab., EC 3474 Florida International University 10555 West Flagler Street, Miami, FL 33174, U.S.A.;

    Semel Institute for Neuroscience Human Behavior UCLA David Geffen School of Medicine 1100 Glendon Avenue PH2, Westwood, CA 90024;

    Department of Mechanical and Materials Engineering (DE/4) Military Institute of Engineering (IME) Praca General Tiburcio, 80 Rio de Janeiro, RJ 22290-270, BRAZIL;

    Department of Mechanical and Material;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程设计;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号