【24h】

Physical Design of Biological Systems

机译:生物系统的物理设计

获取原文
获取原文并翻译 | 示例

摘要

It may seem premature to worry about the design of of livingrnsystems when we do not yet fully understand their operation.rnHowever, the path to understanding is clear, and design willrninevitably follow. It’s not too early to think about how thisrnmight be structured.rnBiological systems, as opposed to the systems consideredrnat ISPD so far, are grown rather than constructed. This processrnis not yet understood in detail but work is in progress,rnwith full understanding to follow. Living creatures are builtrnby a combination of discrete events (cell division) driven byrnanalog variables (concentrations and gradients). Every cellrnin the adult organism has a lineage, a path back to the originalrnegg cell. This is currently under active investigation inrnthe case of the fruit fly, and this talk will describe this effort,rnthe tools that are used, and some of the results so far.rnAfter construction, the operation of the organism is drivenrnby continued chemical signalling, and in the case of animals,rnfaster operations mediated by the nervous system. Here toornunderstanding is coming slowly, driven by studies of modelrnorganisms such as the fruit fly and rodents. All of these arernunder active investigation, and this talk will give a quickrnsummary of progress to date.rnThe partner of analysis is design - creating a system withrncertain desirable features, or lack of particular drawbacks.rnHistorically, design of living systems has been done by crossbreeding.rnThough developed empirically before recordedrnhistory, this algorithm resembles simulated annealing or (notrnsurprisingly) genetic algorithms. Although there have beenrnsome notable successes, this method is limited to local configurationrnchanges, and by the long time scales required.rnHow can design be made faster and more specific? To dornthis, we need both physical tools that can implement desiredrnchanges, and understanding to know what changes to implement.rnThe physical tools needed to create new capabilitiesrnare being developed at both at the level of DNA and genesrn(corresponding very roughly to the level of transistors andrngates or functional units.) This work is well along and is notrnlikely to be the limiting step.rnHowever, using these technologies to achieve desired goalsrnwill require new physical design tools - first to predict thernresults of changes (think of SPICE and logic simulators), tornsuggest ways to achieve desired goals (think logic synthesis)rnand optimize the end result (think design for testability, designrnfor manufacturabilty, and and design centering). Thisrnis a huge opportunity for physical design tools at all levels.rnSome of this is already underway. Industrial scale productionrnof medicine and chemicals currently use relatively minorrnmodifications to cell pathways that already exist. Tools tornunderstand and optimize these complex metabolic networksrnare under active construction and use. At the current level ofrnunderstanding this usually works by enhancing or blockingrnpaths within the existing system.rnAt the next level, synthetic biologists seek to constructrnnovel systems, but using the same basic architecture of livingrnthings. Although only working for systems of a few variablesrnat present, this holds the potential of creating behaviors thatrnare completely independent of those that already exist.rnAt the third level, it must be possible to specify and constructrnneural systems with specified behaviors. Nature doesrnthis, where the same construction methods create the behaviorrnof honeybees and elephants. Here, design tools arerna long ways off since how nervous systems are constructedrnis one of the biggest mysteries of biology. In the broadestrnoutline, the instructions that tell how to build such a systemrnmust be composed of at least two parts - a part that tellsrnroughly which units must be connected, and then rules thatrntell how the detailed connections are made once the generalrnoutline is done. Here the current physical design challenge isrncreating tools to help us understand how this works. Toolsrnto simulate, optimize, or create these nervous systems willrnbe one of greatest opportunities in future physical design.rnFinally, one wonderful attribute of biological systems isrnthat all but the simplest learn and adapt, and are enormouslyrnrobust to minor perturbations and malfunctions ofrnconstituent components. Once again, design tools are prematurernbut the opportunities are enormous.rnIn short, those who believe we are near the end of the roadrnin physical design are thinking only of existing techniques forrnbuilding electronics. In the larger view, the opportunitiesrnahead vastly exceed what has been done already.
机译:当我们还没有完全了解生物系统的运行时,担心它的设计似乎为时过早。然而,理解的途径是明确的,设计将不可避免地遵循。现在思考这种结构如何还为时过早。与迄今ISPD认为的系统相反,生物系统是生长而不是构建的。尚未详细了解此过程,但工作仍在进行中,需要充分理解。生物是由模拟变量(浓度和梯度)驱动的离散事件(细胞分裂)的组合构建的。成年生物中的每个细胞都有一个谱系,一条返回原始肾细胞的途径。目前正在对果蝇的情况进行积极调查,该演讲将描述这种努力,所使用的工具以及迄今为止的一些结果。在构建之后,通过持续的化学信号驱动生物体的运转,并且就动物而言,由神经系统介导的操作更快。在诸如果蝇和啮齿动物等模型生物研究的推动下,人们对此的了解正在慢慢地进行。所有这些都是在积极调查下进行的,本演讲将提供迄今为止最新的进展摘要。分析的伙伴是设计-创建具有某些所需功能或没有特定缺点的系统。从历史上看,生命系统的设计是通过杂交进行的尽管在记录历史之前是凭经验发展的,但是该算法类似于模拟退火算法(或毫无疑问)的遗传算法。尽管取得了一些显着的成功,但是这种方法仅限于本地配置更改,并且需要较长的时间范围。如何使设计更快,更具体?要做到这一点,我们既需要能够实现所需变更的物理工具,又需要了解要实施哪些变更的理解。rn在DNA和基因水平上都正在开发创建新功能所需的物理工具(非常接近于晶体管的水平)这项工作进展顺利,并不一定会成为限制步骤。但是,使用这些技术来实现所需的目标将需要新的物理设计工具-首先预测变化的结果(例如SPICE和逻辑模拟器),达到预期目标的最坏方法(思考逻辑综合)并优化最终结果(思考可测试性的设计,可制造性的设计以及设计居中)。这为各级物理设计工具提供了巨大的机会。其中一些已经在进行中。目前,工业规模生产的药物和化学药品对已经存在的细胞途径使用相对较小的修饰。积极理解和优化这些复杂的代谢网络的工具正在积极建设和使用中。在当前的理解水平上,这通常是通过增强或阻止现有系统中的路径来实现的。在下一个层次上,合成生物学家寻求构建新颖的系统,但使用相同的生物基本结构。尽管仅适用于目前只有少数变量的系统,但这具有创建完全独立于已存在行为的行为的潜力。在第三级,必须可以指定和构造具有指定行为的神经系统。大自然做到了这一点,在这里相同的构造方法创造了蜜蜂和大象的行为。在这里,由于神经系统的构造方式是生物学最大的谜团之一,因此设计工具还有很长的路要走。在最广泛的大纲中,指示如何构建这样的系统的指令至少由两部分组成-一部分大致说明必须连接哪些单元,然后规定一旦完成一般大纲后如何进行详细的连接。在当前的物理设计挑战中,正在创造工具来帮助我们了解其工作原理。模拟,优化或创建这些神经系统的工具将是未来物理设计中最大的机会之一。再次,设计工具还为时过早,但机遇却是巨大的。简而言之,那些相信我们已经接近物理设计道路尽头的人只会考虑现有的电子制造技术。从更大的角度来看,机会已经大大超过了已经完成的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号