首页> 外文会议>2017 Internet Technologies and Applications >A numerical bubbly flow investigation of drag reduction for underwater vehicles
【24h】

A numerical bubbly flow investigation of drag reduction for underwater vehicles

机译:水下航行器减阻的数值气泡流研究

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses the numerical investigation of dispersed bubbly flow within the boundary layer of a fully submerged axisymmetric body in horizontal position. The aim is to analyse the influence of injection position and bubble parameters on the drag reduction behaviour. The numerical study is conducted with the commercial CFD package ANSYS Fluent using the Eulerian-Eulerian modelling approach. Several sets of simulations are carried out with air injection velocities in the rage of 1 m/s to 15 m/s, injection locations between 0 and 0.5 m, and bubble diameters from 0.1 mm to 2 mm. In order to obtain the percentage drag reduction the results are correlated with a model without air injection. The simulations demonstrate a different behaviour between small and large bubble diameters of 0.1 mm and 2 mm respectively. Small bubbles archive drag reduction rates around 10% almost independent from the injection velocity and position, while large bubbles are highly affected by those parameters. The maximum drag reduction of 20.67% is achieved by injecting bubbles of 2 mm diameter with a velocity of 12.5 m/s at the tip of the prow nose. It is presented that the drag reduction increases with increasing injection velocity and bubble diameter. These parameters enable the bubbles to build up a continuous film across large parts of the hull which is required for a sufficient drag reduction.
机译:本文讨论了水平位置完全淹没的轴对称体边界层内气泡流的数值研究。目的是分析喷射位置和气泡参数对减阻性能的影响。使用Eulerian-Eulerian建模方法,使用商用CFD软件包ANSYS Fluent进行了数值研究。空气喷射速度在1 m / s至15 m / s的范围内,喷射位置在0至0.5 m之间,气泡直径从0.1 mm至2 mm,进行了几组模拟。为了获得减阻百分数,将结果与没有空气注入的模型相关。仿真表明,在直径分别为0.1 mm和2 mm的小气泡直径和大气泡直径之间,行为不同。小气泡归档的减阻率大约为10%,几乎与注射速度和位置无关,而大气泡受这些参数的影响很大。通过在前鼻尖处以12.5 m / s的速度注入直径为2 mm的气泡,可以最大程度地降低阻力20.66%。结果表明,随着喷射速度和气泡直径的增加,阻力减小量增加。这些参数使气泡能够在船体的大部分区域上形成连续的薄膜,这是充分减小阻力所需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号