首页> 外文会议>2003 ASME(American Society of Mechanical Engineers) Turbo Expo; Jun 16-19, 2003; Atlanta, Georgia >GEOMETRY EFFECTS ON THE FLOW FIELD AND THE SPECTRAL CHARACTERISTICS OF A TRIPLE ANNULAR SWIRLER
【24h】

GEOMETRY EFFECTS ON THE FLOW FIELD AND THE SPECTRAL CHARACTERISTICS OF A TRIPLE ANNULAR SWIRLER

机译:几何效应对三重环形旋流器的流场和光谱特性的影响

获取原文
获取原文并翻译 | 示例

摘要

The dynamics of vortex breakdown are important to the performance of gas turbine combustors where swirling flows are extensively used to stabilize the flame and extend the lean flammability limit (LBO). Due to the strong interaction of vortical structures in the swirling flow with heat release and acoustical modes, vortex breakdown mechanism is essential to understanding the thermoacoustic behavior and to the development of combustion instability control strategy . This paper analyzes the vortex breakdown behavior downstream of a Triple Annular Research Swirler (TARS) based on velocity flow field data from stereoscopic PIV measurement and spectral data from hotwire/film measurements. The vortical structure is highly dependent on the different swirler combinations (swirler geometry) as well as on inlet conditions such as air flow-rate, mixing tube length and downstream conditions such as exhaust nozzle contraction ratio. The scale, location, strength, and formation mechanisms of the large-scale vortices vary for different geometries. The shape of the recirculation bubble changes with the outlet boundary conditions, suggesting that the swirling flow inside the combustion chamber remains subcritical downstream of the vortex breakdown. However, spectral analysis reveals that the dominant frequencies close to the exit of the TARS show only slight change for different outlet boundary conditions. Three ranges of frequencies characterize the spectral domain of TARS: high frequency close to the TARS exit, middle range frequency downstream of this region, and low frequency in most regions further downstream. The sources of instabilities in these three regions could be attributed to the strong shear layer, processing vortex core and interaction between spanwise and azimuthal instabilities. The outlet boundary conditions affect the middle and low frequency range but have no effect on the high frequency. The inlet conditions have global effect on the entire flow region.
机译:涡旋分解的动力学对燃气轮机燃烧器的性能很重要,在该燃烧器中,广泛使用涡流来稳定火焰并扩展稀燃性极限(LBO)。由于旋流中的旋涡结构与热释放和声学模式之间的强相互作用,旋涡破坏机制对于理解热声行为和发展燃烧不稳定性控制策略至关重要。本文基于立体PIV测量的速度流场数据和热线/薄膜测量的光谱数据,分析了三重环形研究旋流器(TARS)下游的涡流破坏行为。旋涡结构高度取决于不同的旋流器组合(旋流器几何形状)以及进气条件(例如空气流量,混合管长度)和下游条件(例如排气喷嘴收缩率)。大型旋涡的规模,位置,强度和形成机制因不同的几何形状而异。再循环气泡的形状随出口边界条件而变化,这表明燃烧室内部的旋流在涡流分解的下游仍处于亚临界状态。但是,频谱分析表明,对于不同的出口边界条件,靠近TARS出口的主频仅显示出很小的变化。三个频率范围表征了TARS的频谱范围:靠近TARS出口的高频,该区域下游的中频频率以及大多数下游区域的低频。这三个区域的不稳定性源可归因于强剪切层,加工涡旋核以及翼展方向和方位不稳定性之间的相互作用。出口边界条件影响中低频范围,但不影响高频。入口条件对整个流动区域具有全局影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号