...
首页> 外文期刊>Neuromodulation: journal of the International Neuromodulation Society >High‐Resolution Multi‐Scale Computational Model for Non‐Invasive Cervical Vagus Nerve Stimulation
【24h】

High‐Resolution Multi‐Scale Computational Model for Non‐Invasive Cervical Vagus Nerve Stimulation

机译:非侵入性宫颈迷走神经刺激的高分辨率多尺度计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

Objectives To develop the first high‐resolution, multi‐scale model of cervical non‐invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds. Methods An MRI‐derived Finite Element Method (FEM) model was developed to accurately simulate key macroscopic (e.g., skin, soft tissue, muscle) and mesoscopic (cervical enlargement, vertebral arch and foramen, cerebral spinal fluid [CSF], nerve sheath) tissue components to predict extracellular potential, electric field (E‐Field), and activating function along the vagus nerve. Microscopic scale biophysical models of axons were developed to compare axons of varying size (Aα‐, Aβ‐ and Aδ‐, B‐, and C‐fibers). Rheobase threshold estimates were based on a step function waveform. Results Macro‐scale accuracy was found to determine E‐Field magnitudes around the vagus nerve, while meso‐scale precision determined E‐field changes (activating function). Mesoscopic anatomical details that capture vagus nerve passage through a changing tissue environment (e.g., bone to soft tissue) profoundly enhanced predicted axon sensitivity while encapsulation in homogenous tissue (e.g., nerve sheath) dulled axon sensitivity to nVNS. Conclusions These findings indicate that realistic and precise modeling at both macroscopic and mesoscopic scales are needed for quantitative predictions of vagus nerve activation. Based on this approach, we predict conventional cervical nVNS protocols can activate A‐ and B‐ but not C‐fibers. Our state‐of‐the‐art implementation across scales is equally valuable for models of spinal cord stimulation, cortex/deep brain stimulation, and other peripheral/cranial nerve models.
机译:在临床相关的Rheobase阈值,制定第一种高分辨率,宫颈非侵入性迷住神经刺激(NVNS)的高分辨率多尺度模型,并预测迷走纤维型活化。方法采用MRI衍生的有限元方法(FEM)模型以精确模拟键宏观(例如,皮肤,软组织,肌肉)和介观(颈椎扩大,椎弓根和孔,脑脊髓[CSF],神经护套)组织组分以预测沿迷走神经的细胞外电位,电场(E场)和激活功能。开发了显微尺度轴突的生物物理模型,用于比较不同尺寸的轴突(Aα-,Aβ-和Aδ-,B-和C纤维)。 Rheobase阈值估计基于步进函数波形。结果发现宏观尺度准确度确定迷走神经周围的E场大小,而Meso-Scale精确确定的E场变化(激活功能)。脱模解剖细节通过改变组织环境(例如,骨骼至软组织)捕获迷走神经通道,这些细胞正在增强预测的轴颈敏感性,同时封装在均匀组织(例如,神经护套)钝的轴颈敏感性对NVN的同时。结论这些发现表明,迷走神经激活的定量预测需要在宏观和介观尺度的现实和精确建模。基于这种方法,我们预测常规的宫颈NVNS协议可以激活A-和B-但不是C纤维。我们跨尺度的最先进的实施对于脊髓刺激,皮质/深脑刺激和其他周围/颅神经模型的模型同样有价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号