...
首页> 外文期刊>Journal of the American Chemical Society >Synthesis of Heptaprenyl-Lipid Ⅳ to Analyze Peptidoglycan Glycosyltransferases
【24h】

Synthesis of Heptaprenyl-Lipid Ⅳ to Analyze Peptidoglycan Glycosyltransferases

机译:庚二烯脂脂质Ⅳ的合成分析肽聚糖糖基转移酶

获取原文
获取原文并翻译 | 示例
           

摘要

Peptidoglycan (PG) is a crosslinked carbohydrate polymer that surrounds and protects bacterial cell membranes, enabling bacteria to withstand large fluctuations in internal osmotic pressure. Because peptidoglycan is essential for bacterial cell survival, the enzymes involved in the biosynthesis of PG are targets for antibiotics. Over the past fifteen years, great progress has been made toward understanding the different steps of PG synthesis, but there is still one family of enzymes that remains poorly characterized: the peptidoglycan glycosyltransferases (PGTs) that catalyze formation of the carbohydrate chains of peptidoglycan from a disaccharide precursor called Lipid Ⅱ (1, Figure 1). Bacteria typically contain several different PGTs whose biological roles are poorly understood. Biochemical studies of PGTs have been hampered by difficulties in obtaining substrates to dissect the polymerization mechanism. The first coupling catalyzed by PGTs involves the condensation of two Lipid Ⅱ substrates to form a tetrasaccharide, Lipid Ⅳ (2, Figure 1). Subsequent coupling cycles involve the elongation of the growing polymer by addition of Lipid Ⅱ subunits. Therefore, after the first coupling cycle, the substrates used by PGTs are different. To probe the mechanism of glycosyltransfer and to characterize enzyme inhibitors, it is essential to have Lipid Ⅱ substrates (1) as well as a longer substrate representing the growing polymer (such as Lipid Ⅳ, 2). We and others have previously developed approaches to obtain Lipid Ⅱ, but longer substrates have not been reported. Here we describe the total synthesis of heptaprenyl-Lipid Ⅳ (2b) and we show that both major E. coli PGTs, PBP1a and PBP1b, couple this substrate to heptaprenyl-Lipid Ⅱ (1b). Unexpectedly, PBPla also couples Lipid Ⅳ subunits to one another, suggesting that some PGTs may be able to ligate longer glycan polymers in addition to building glycan chains from Lipid Ⅱ.
机译:肽聚糖(PG)是一种交联的碳水化合物聚合物,可包围并保护细菌细胞膜,使细菌能够承受内部渗透压的较大波动。由于肽聚糖对于细菌细胞的存活至关重要,因此参与PG生物合成的酶是抗生素的目标。在过去的15年中,在理解PG合成的不同步骤方面取得了长足的进步,但是仍然有一个酶家族的特征仍然很差:肽聚糖聚糖糖基转移酶(PGTs)可以催化肽聚糖的糖链形成。二糖的前体称为脂质Ⅱ(1,图1)。细菌通常含有几种不同的PGT,其生物学作用尚不清楚。 PGT的生化研究由于难以获得用于剖析聚合机理的底物而受到阻碍。 PGT催化的第一个偶联反应涉及两个脂质Ⅱ底物的缩合形成四糖脂质Ⅳ(2,图1)。随后的偶联循环涉及通过添加脂质Ⅱ亚基延长聚合物的生长。因此,在第一个耦合周期之后,PGT使用的基板是不同的。为了探测糖基转移的机理并表征酶抑制剂,必须具有脂质Ⅱ底物(1)以及代表生长中的聚合物的较长底物(例如脂质Ⅳ,2)。我们和其他人以前已经开发了获得脂质Ⅱ的方法,但是没有报道更长的底物。在这里,我们描述了七戊烯基-LipidⅣ(2b)的总合成,并且我们发现,主要的大肠杆菌PGT,PBP1a和PBP1b都将这种底物偶联到庚二烯基-LipidⅡ(1b)。出乎意料的是,PBP1a还将脂质Ⅳ亚基彼此偶联,这表明除了从脂质Ⅱ中构建聚糖链外,一些PGT可能还可以连接更长的聚糖聚合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号