您现在的位置: 首页> 研究主题> microstructure

microstructure

microstructure的相关文献在1989年到2023年内共计983篇,主要集中在金属学与金属工艺、一般工业技术、肿瘤学 等领域,其中期刊论文979篇、会议论文4篇、相关期刊127种,包括金属学报:英文版、中国铸造:英文版、中国稀土学报:英文版等; 相关会议3种,包括2008年全国博士生学术论坛(航空宇航科学与技术)、2007年中国机械工程学会年会、2005年中国发动机铸件生产技术研讨会等;microstructure的相关文献由3172位作者贡献,包括刘安生、沙维、袁冠森等。

microstructure—发文量

期刊论文>

论文:979 占比:99.59%

会议论文>

论文:4 占比:0.41%

总计:983篇

microstructure—发文趋势图

microstructure

-研究学者

  • 刘安生
  • 沙维
  • 袁冠森
  • 邵贝羚
  • 冯吉才
  • 王晓华
  • Hao Yu
  • 王敬
  • 王瑞坤
  • Yonglin Kang
  • 期刊论文
  • 会议论文

搜索

排序:

年份

期刊

关键词

    • Zhiqiang Wu; Yi Wu; Renjun Xie; Jin Yang; Shujie Liu; Qiao Deng
    • 摘要: One of the main obstacles hindering the exploitation of high-temperature and high-pressure oil and gas is the sealing integrity of the cement sheath.Analyzing the microstructure of the cement sheath is therefore an important task.In this study,the microstructure of the cement sheath is determined using a CT scanner under different temperature and pressure conditions.The results suggest that the major cause of micro-cracks in the cement is the increase in the casing pressure.When the micro-cracks accumulate to a certain extent,the overall structure of the cement sheath is weakened,resulting in gas channeling,which poses a direct threat to the safe production of oil and gas.A change in the casing temperature has a limited effect on the microstructure of the cement sheath.
    • Xinli Zhang; Jiayu Zhang; Zuhua Zhang; Yiqiang Wu; Yingfeng Zuo
    • 摘要: Geopolymer is a new alternative cement binder to produce concrete.In the present study,a novel geopolymer composites containing bamboo shaving(0–2 wt.%)were fabricated and exposed to the temperatures of 200°C,400°C,600°Cand 800°C.Physical properties,micro-structure,and mechanical strengths of the geopolymer composites were evaluated before and after heating in order to understand their thermal properties,which are essential for the use as building materials.As the temperature rises,the drying shrinkage and apparent porosity of the composites increase,while the compressive and bending strengths decrease.At the temperature range of 200°C–800°C,the residual compressive strength rates of the geopolymer composite containning 2 wt.%bamboo shaving were respective 73.8%,61.47%,56.16%,and 29.56%,meanwhile,the residual flexural strength rates were respective 46.69%,8.68%,2.52%,and 2.33%.Correspondingly,the residual compressive strength rates of pure geopolymer were respective 72.81%,61.99%,54.55%,and 14.64%;the residual flexural strength rates were 48.87%,5.69%,3.22%,and 2.47%,respectively.Scanning electron microscope(SEM),optical microscope,and X-ray diffractometry(XRD)were applied to find the microscopic changes.The strength loss in the geopolymer composites was mainly because of the thermal degradation of bamboo shaving and shrinkage of geopolymer matrix.Bamboo shaving has great potential as reinforcer in developing low-cost geopolymer composites and may be used for applications up to 400°C.
    • Wei Chen; Weijie Shan; Yue Liang; Frederic Skoczylas
    • 摘要: This study deals with the analysis of the detrimental effects of a“sulfate attack”on cement mortar for different dry-wet cycles.The mass loss,tensile strength,and gas permeability coefficient were determined and analyzed under different exposure conditions.At the same time,nitrogen adsorption(NAD),scanning electron microscopy(SEM),and X-ray diffraction(XRD)techniques were used to analyze the corresponding variations in the microstructure and the corrosion products.The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to the mortars in aqueous solution.The pores fill with corrosion products,increasing the mortar specimen mass and tensile strength while reducing the permeability coefficient and pore size distribution.As corrosion proceeds,the crystallization pressure of the corrosion products increases,resulting in a 16%reduction in tensile strength from the initial value and a 2.6-factor increase in the permeability coefficient,indicating sensitivity to sulfate attack damage.Furthermore,the main corrosion products generated in the experiment are gypsum and ettringite.Application of osmotic pressure and extension of the immersion time can accelerate the erosion process.
    • Huairui Wang; Yao Cheng; Xue Zhang; Yingping Wang; Hui Zhao
    • 摘要: Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely studied.In the present study,color parameters and scanning electron microscope(SEM)were determined to evaluate the differences of ginseng color and microstructure induced by processing procedure.Quantitative analysis of multi-components by a single-marker(QAMS)method and anti-α-amylase activity test were used to assess variations of chemical ingredients and pharmacological activity between white and red ginseng.Finally,molecular docking studies were carried out to screen out the most effective compound againstα-amylase.Results indicated that processing had a significant impact on the physicochemical properties and pharmacological activity of white and red ginseng.After processing,the color value of L*declined significantly.Red ginseng sample displayed a compact structure and presented of a gel layer on the surface compared to white ginseng.Additionally,the content of ginsenosides and the activity of anti-α-amylase decreased.The contents of total ginsenosides were positively correlated with the anti-α-amylase activities of ginseng,and ginsenoside Rb1 might be the most effective compound to inhibit the activity ofα-amylase.
    • Zhiwei Wang; Min Zhang; Cong Li; Fenglei Niu; Hao Zhang; Peng Xue; Dingrui Ni; Bolv Xiao; Zongyi Ma
    • 摘要: The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
    • Hongbo Ju; Rui Zhou; Jing Luan; Ch Sateesh Kumar; Lihua Yu; Junhua Xu; Junfeng Yang; Bowei Zhang; Filipe Fernandes
    • 摘要: The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose of this work is to study the influence of C additions on the tribological behavior of a magnetron-sputtered TiN film in air,water,and seawater.The results show that the addition of C into the TiN binary film induced a new amorphous phase,and the films exhibited a dual phase of fcc(face-centered cubic)-TiN and amorphous carbon.The antifriction and wear-resistance properties were enhanced in air and water by adding 19.1at%C.However,a further increase in the C concentration improved anti-frictional properties but also led to higher wear rates.Although the amorphous phase induced microbatteries and accelerated the corrosion of TiN phases in seawater,the negative abrasion state was detected for all Ti-C-N films due to the adhesion of the tribocorrosion debris on the wear track.
    • Ming-chen Ma; Chao-qing Luo; Si-min Chen; Hong-qun Tang; Shan-shan Hu; Yu-mei Zhou; Jian-lin Liang
    • 摘要: Boron and carbon contents are the main factors influencing the properties of high-boron steel.In this study,experimental samples with different boron-to-carbon ratios(%B/%C)were prepared.The microstructures of the different samples were observed,and their hardness,bending strength,and impact toughness were investigated.Results show that the main microstructures in the investigated high-boron steel samples are the eutectic Fe_(2)B structure with a fishbone shape and the ternary peritectic Fe_(3)(C,B)structure with a chrysanthemum shape.When the boron content is 2.5wt.%and the carbon content is 0.43wt.%(i.e.,%B/%C=5.82),the overall mechanical properties of the alloy are the best.The alloy's hardness,bending strength and impact toughness reach their maximums,which are 67.3 HRC,1,267.36 MPa and 6.19 J·cm^(-2),respectively.The optimized alloy is compared with conventional materials exhibiting excellent wear resistance(namely,high-manganese steel and high-chromium cast iron)through two-body and three-body abrasion tests.The wear resistance of this high-boron steelinvestigated in this work is found to be superior to those of the more common materials.
    • Tian-yu Liu; Zhi-hao Zhu; Shuang Zhang; Xiao-hua Min; Chuang Dong
    • 摘要: A novel Ti-6.38Al-3.87V-2.43Mo alloy was designed with a cluster formula of 12[Al-Ti12](V0.75Mo0.25Ti2)+4[Al-Ti12](Al3)by replacing Ti with Mo/V on the basis of the Ti-Al congruent alloy.The effects of laser power and scanning speed on the molten pool size,surface roughness,relative density,microstructure,and micro-hardness of single-track and bulk Ti-6.38Al-3.87V-2.43Mo samples prepared via laser additive manufacturing(LAM)were investigated.The results show that processing parameters significantly affect the formability,microstructure,and micro-hardness of the alloy.With decreasing laser power from 1,900 W to 1,000 W,the relative density is decreased from 99.86%to 90.91%due to the increase of lack-of-fusion;however,with increasing scanning speed,the relative density does not change significantly,but exceeds 99%.In particular,Ti-6.38Al-3.87V-2.43Mo samples of single-track and bulk exhibit a good formability under an input laser power of 1,900 W and a scanning speed of 8 mm·s_(-1),and display the lowest surface roughness(Ra=13.33μm)and the highest relative density(99.86%).Besides,the microstructure of LAM Ti-6.38Al-3.87V-2.43Mo alloy coarsens with increasing laser power or decreasing scanning speed due to the greater input energy reducing the cooling rate.The coarsening of the microstructure decreases the microhardness of the alloy.
    • Matthew J. Armstrong; André M. Pincot
    • 摘要: The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillatory shear flow. The continuously evolving, rebuilding, and breaking down of the microstructure is shown, and correlated through the rheology experiments, thixo-elastovisco-plastic modeling, and small angle light scattering (SALS). All elements are then connected via a global, stochastic optimization algorithm that will provide parameter estimation with a “best-fit” of the steady state and transient data using the well-known Modified Delaware Thixotropic Model, allowing for the comparison of SALS results with experimental values.
    • HOU Xiangwu; WANG Yanbo; ZHOU Haitao; SUN Xin; GONG Zhengxuan; JIANG Shanyao; XIAO Lü
    • 摘要: Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with different isothermal forging processes is carried out.The microstructure and properties of the alloy in the as-cast,isothermal forged,and post-aging states after forging are studied with optical microscope(OM),scanning electron microscope(SEM),and tensile testing.The results show that significant dynamic recrystallization occurs during the isothermal forging process,a fine equiaxed grain structure is formed,and the mechanical properties of the alloy are greatly improved.When the isothermal forging temperature is 460°C and the strain rate is 0.02 s^(-1),the alloy structure performance is the best,the room temperature tensile yield strength(TYS)is 218 MPa,the ultimate tensile strength(UTS)is 299 MPa,and the fracture elongation(FE)is 19.2%.When the alloy is post-forging artificial aged,theα-Mg matrix is dispersed,the Mg_5(Gd,Y)phase is precipitated,the UTS of the alloy is increased to 392 MPa,and the FE is reduced to 12.0%.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号