您现在的位置: 首页> 研究主题> 冷原子荧光法

冷原子荧光法

冷原子荧光法的相关文献在1989年到2020年内共计94篇,主要集中在化学、环境质量评价与环境监测、环境科学基础理论 等领域,其中期刊论文89篇、会议论文2篇、专利文献251385篇;相关期刊62种,包括科技风、广东微量元素科学、广州化工等; 相关会议2种,包括第三届全国实验室管理科学研讨会、第十三次环境监测学术交流会等;冷原子荧光法的相关文献由159位作者贡献,包括石杰、朱永琴、屈凌波等。

冷原子荧光法—发文量

期刊论文>

论文:89 占比:0.04%

会议论文>

论文:2 占比:0.00%

专利文献>

论文:251385 占比:99.96%

总计:251476篇

冷原子荧光法—发文趋势图

冷原子荧光法

-研究学者

  • 石杰
  • 朱永琴
  • 屈凌波
  • 张宗培
  • 李建军
  • 石威
  • 龚雪云
  • 张秀丽
  • 汪炳武
  • 沈志群
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 万鹰昕; 张静; 李楠
    • 摘要: 以溴化钾-溴酸钾消解样品,应用连续流冷原子荧光光谱法测定天然水体中的痕量汞.研究了还原剂氯化亚锡(SnCl 2)浓度和酸度、连续流的样品和还原剂流速、分析时间等对荧光信号的影响.结果表明,在最佳分析条件下,汞在0~10.0 ng/L范围内浓度与荧光强度线性关系良好,标准曲线线性回归方程为:IF=2.7558c-1.018,线性相关系数为0.9965,仪器检出限为0.18 ng/L.湖泊水样测定结果分别为4.06,7.10 ng/L.样品测定精密度<5%,加标回收率分别为105.92%和109.27%.该分析方法操作简单,灵敏度高,适于样品的批量快速分析.
    • 张志轩
    • 摘要: 目前,检测生活饮用水中的汞的常见方法有电感耦合等离子体质谱法及氢化物发生-原子荧光法.而原子荧光法又分为冷原子荧光法和热原子荧光法.实验数据测得,冷原子荧光检出限比热原子荧光低,但相关系数则是热原子荧光更高.说明冷原子荧光测定低浓度的汞溶液灵敏度更高,热原子荧光稳定性好,精密度高.
    • 王利利; 冯楠楠
    • 摘要: 本文介绍了冷原子荧光法的原理及意义,论述了冷原子荧光法测汞的注意事项,并分析了冷原子荧光法在各方面测汞的应用。
    • 吴晓云; 郑有飞; 林克思
    • 摘要: 自然源汞释放对全球大气汞的贡献和循环具有重要影响,地表过程释汞是大气汞重要的自然源,土壤空气汞浓度与大气汞浓度差决定着土壤/大气汞的交换通量.基于目前测定土壤空气中汞浓度的缺点,建立了一种新的测定土壤空气汞浓度的方法.本研究在南京六合循环农业生态区采集了水稻土壤剖面空气,并对样品总汞浓度进行了分析.利用本实验装置,真空泵在低流量下连续抽取土壤剖面空气并预富集于金管上,并结合冷原子荧光法(CVAFS)测定.实验结果显示方法检出限为0.023 ng m-3,水稻土壤空气汞浓度变化范围在6.0~18.9 ng m-3.平行实验装置在同时测定实验室大气和农田土壤空气汞浓度时,相对标准偏差(RSD)均小于<15%,同时对比实验证明没有采集土壤表层大气.实验装置简单,野外操作方便,能准确和精确的测定水分不饱和土壤空气中汞浓度.%Mercury emission from natural resources contributes greatly to global atmospheric mercury, thus having an important impact on circulation of atmospheric mercury. Mercury emission during the earth surface processes is a major natural source of mercury in the atmosphere. In view of the shortcomings of the current methods for determining mercury concentration in soil air,this study has developed a new method. To test the method,soil air was collected from profiles of paddy soils in the Nanjing Liuhe Circular Agriculture Ecological Zone for analysis of total mercury. Using the experimental device,an inverted funnel,soil air in the soil profile was pumped continuously at a low flow rate,into a gold-coated pipe for pre-enrichment of mercury in the soil air. Gold-coated quartz sands were used as adsorbent to collect gaseous mercury in the soil air and the adsorption process lasted 3 hours with adsorption efficiency reaching nearly as high as 100% and relative standard deviation being 2.4%~5.4%. The highest mercury concentration was detected in the soil air extracted from the topsoil layer(0~3 cm)and the concentration decreased significantly with soil depth, but leveled off after the depth went beyond 20 cm. The experiment on effect of sampling flow on accuracy of the measurement,shows that when the sampling flow rate was below 30 ml min-1 RSD of the measurement was<10.0% and when the sampling flow rate went beyond 30 ml min-1,RSD increased,which indicates that at a higher flow rate than 30 ml min-1,the device may suck some air from the atmosphere into its chamber,and a flow rate of 20 ml min-1 is a safe one that enables the device to extract soil air merely from the soil profile. Then the air samples were analyzed with the cold vapor atomic fluorescence(CVAFS)method. Results show that the absolute detection limit is 0.023 ng m-3. Air mercury concentration in the paddy soils varied in range from 6 to 18.94 ng m-3. When the parallel experimental device was used to determine mercury concentrations of the air in the laboratory and soil air in the farmland simultaneously relative standard deviations of two measurements were both<15%. The comparison experiments show that the device collects air samples merely from soil profiles,rather than from the atmosphere above the soil surface. Mercury concentration of the soil air in paddy soils peaked at noon,which may be attributed to the higher temperature in the topsoil,intensive light and effective radiation during the noon time,enhancing photochemical reactions of mercury and increasing mercury concentration in the soil air. The highest concentration of gaseous mercury in the soil air was detected in soils at 6 cm in depth of the soil profile and then in soils at 3 cm in depth,which suggests that mercury in the soil air of the topsoil escapes into the atmosphere rapidly and its diffusion at 6 cm is retarded by soil. Additionally,the higher water content at 6 cm than at 3 cm may provide profitable additions for mercury in soil and soil water to convert into Hg0 in soil air. The soil air in underlying soil layers is relatively stable and less changed,which further proves the method is reliable. This method has the following advantages:during the experiment,lithium batteries power the device,which is easy to operate in the field and capable of collecting soil air at different depths,and enables spatio-temporal synchronization of observation of mercury concentrations in the soil profile. But it should be noted that this experiment can only be carried out in paddy fields unsaturated with soil water and the use of rotameter may lead to errors in flow measurement. This experiment is characterized by simplicity of the devices,and easy operation in field and can be used to precisely and accurately measure gaseous mercury concentrations in soil air in unsaturated paddy fields.
    • 吴玲
    • 摘要: 运用原子荧光法和冷原子荧光法测定了同款化妆品中的含汞量,并且根据实验测定结果,运用标准偏差法,系统对比分析了两种方法的优缺点,结果表明:两种方法具有一定的可比性,并且均具有较高的质量控制指标;原子荧光法有较好的稳定性和精度,但其使用成本较高,冷原子荧光法加标回收率较高,实验载气是空气,可以明显降低实验成本.
    • 徐惠
    • 摘要: 冷原子荧光法由于其测定下限低,精确度高,对于痕量组分的测定,其结果十分可靠。本文对冷原子荧光法测定水中汞技术进行了简介,并对其在环境监测方面的应用进行了整理,希望能促进我国环境监测水平的提升。
    • 杨希; 唐长春
    • 摘要: 介绍了冷原子荧光法在化学研究中具有十分重要的价值,通过运用高纯度气液分离技术、ICP原子化技术、单光子等关键技术可实现超高灵敏度检测、保证分析过程无污染,对进行此领域研究的同行具有一定的参考价值。
    • 但汉平; 徐金炉
    • 摘要: 介绍了冷原子荧光法技术在许多领域的应用日益广泛,可用于精确测定不同样品中的微量汞,冷原子具有很小的速度和速度分布以及良好的相干性,冷原子的速度可以精确地控制在每秒几米左右,在系统集成和小型化方面有着明显优势。
    • 郑淑华; 陈慧连; 曾宇斌
    • 摘要: 利用中压微波消解,不赶酸,20%~25%HNO3介质,冷原子荧光法测定大米中的汞,样品加标回收率91.9%~104.5%,国家标准物质相对误差小于5%,标准溶液相对标准偏差小于3%,样品相对标准偏差小于4%.此法快速有效、简洁环保,适合测定大米以及其它农作物样品中的汞.
    • 于永斌; 何振辉; 徐辉
    • 摘要: 建立了一种用王水水浴消解土壤样品-冷原子荧光测定土壤中的微量汞的分析方法.在优化实验条件下,方法的检出限为0.010 2 ug/L;土壤中汞的回收率为95%~109%;测定下限为0.01 ug/g.该方法具有操作简便、快速、准确、灵敏度高、重复性好等优点.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号