您现在的位置: 首页> 研究主题> tectonic

tectonic

tectonic的相关文献在1991年到2022年内共计135篇,主要集中在地质学、肿瘤学、地球物理学 等领域,其中期刊论文135篇、相关期刊17种,包括地学前缘、新疆地质、中国科学等; tectonic的相关文献由467位作者贡献,包括ZHANG、WANG、LI等。

tectonic—发文量

期刊论文>

论文:135 占比:100.00%

总计:135篇

tectonic—发文趋势图

tectonic

-研究学者

  • ZHANG
  • WANG
  • LI
  • YANG
  • CHEN
  • Mohsen Pourkermani
  • SUN
  • LIU
  • Mehran Arian
  • ZHENG
  • 期刊论文

搜索

排序:

年份

作者

关键词

    • Zhi-cai Dang; Jun-jian Li; Chao Fu; Guo-wei Qin; Bi-yu Yang
    • 摘要: 1.Objective The northern margin of the Alxa Block in Inner Mongolia is located in the middle part of the southern margin of the Central Asian Orogenic Belt.It serves as a key position that connects the eastern and western tectonic units of the Central Asian Orogenic Belt and is an ideal site for the research on the final closing process of the Paleo-Asian Ocean.
    • Ibrahima Gassama; Moussa Dabo; Emmanuel Tama Samoura; Mamadou Ndiaye
    • 摘要: The tectonic structures of the Mako area in the Kédougou-Kéniéba inlier (KKI) were mapped with tele-analytical investigation which is validated by field data. This study is based on different images processing in particular: 1) the colored combinations (1 to 5) and panchromatic (8) thematic mapping bands of the Landsat-8 (ETM+) satellite;2) Digital Elevation Model (DEM) image of Space Shuttle Radar Topography Mission (SRTM);3) airborne geophysics (aeromagnetic and radiometric) images. In these images, four major directions of lineaments NS, NNE-SSW, NW-SE and EW would be related to the tectonic structures, have been identified and mapped. Field data confirm these four structural directions and show that most of these lineaments are related to faults, shear and/or thrust zones, or even basic rock dykes. N-S to NE-SW oriented lineaments are more frequent followed by those NW-SE oriented. These two directions of lineaments are generally in correlation with trajectories of major sinistral shear zones in the Mako area. They would be associated with the S2a and S2b schistosities relative to the D2 Eburnean major deformation. They often intersect the E-W oriented lineaments which are less frequent and sometimes folded and crenulated. This E-W oriented lineament would be prior and are associated with the S1 schistosity of the D1 Eburnean thrust phase of deformation. At the scale of the studied area, these major linear structures (shear zones) are conjugated and create a partitioning of deformation through an anastomosed network of mylonitic shear zones which surround weakly deformed rock bodies. All these structures would be related to the Eburnean or post-Eburnean orogenic events in this Mako area.
    • Sanaa Al-Zyoud
    • 摘要: Geothermal energy is considered as one of the new-green-free renewable energy resources that Jordan is blessed with. Geothermal energy installation in Jordan will have a positive impact on the economy, it will reduce the national energy bill. Shallow geothermal systems are likely to be promising for future utilization in the country. Therefore, further evaluations of geothermal energy resources are highly recommended. Distributed efforts have been done to evaluate the potential of geothermal resources utilization in Jordan. A comprehensive geothermal resources assessment has not yet been conducted in the country. The present work evaluates the potential of four geothermal fields in Jordan. Geothermal gradient map shows that Jordan has two high geothermal gradient fields with higher than 4.5°C/100m and other two moderate geothermal gradient fields with a range of 3.5 - 4.5°C/100m. It has been found that the water temperature in some fields reaches about 68.5°C. Five possible heat source hypotheses were discussed. Geothermal potential in Jordan is expected to evolve as a result of NS trending Dead Sea Rift activities. With the presence of faults parallel with geothermal gradient anomalies in each evaluated field, this hypothesis becomes the most effective to explain the heat source. It is of utmost importance to consider the geothermal energy potential for future utilization in Jordan. An integrated geothermal potential map will be very helpful for energy policies and future strategies planning in the country.
    • Mahmoud A. Benissa; Jean Chorowicz
    • 摘要: Remote sensing analysis is an efficient tool for updating geological maps. The regional scale map obtained in this project from compilation of the pre-existing maps and of a number of space images is somewhat more complete. It takes into account the usual field and laboratory parameters of the rock units, through the previous geologic maps, together with remote sensing parameters such as spectral signatures, textures, roughness, morphology that are observed from optical, microwave and DEM imagery. With more rock characteristics, the old maps are obligatory improved. The Cenozoic faulting in the Al Hamra al Hamadah plateau is largely influenced by the tectonics affecting the Paleozoic oil bearing structures that are hidden by the late Cretaceous-Paleocene layers. The tectonic style is that of reactivation of the Paleozoic faults under effects of the NNE-trending regional tension. Then the faults on the surface of the plateau would indicate location of the hidden Paleozoic faults in depth. A flat plateau, in the arid environment, appears to be a very favorable environment for mapping of gentle folds, faults and tectonic sinkholes. Remote sensing is a fruitful approach in this case study. The gentle anticlines for instance are undetectable in the field, but computer assisted shadowing with a low elevation angle of illumination is the key processing for evidencing these features. Problems of drillings in the area are well known for example to Waha, AGOCO and PB Companies during their exploration activities in the concessions in Ghadames Basin. According to them several incidents of losing drilling Pits have occurred and drilling came into a hole. Because this paper is aimed to know the exact location of sinkholes in the Ghadames basin, I would recommend all the oil companies to review this work and try to trace the sinkholes indicated to minimize the risk of drilling problems.
    • Lijun Chen
    • 摘要: In the west coast of the United States, there are frequent strong earthquakes and volcanic activities in the crust, high accuracy of the earthquake catalogue, so it is the best choice to study prediction of strong earthquakes and volcanoes, and there are two different types of seismic cone tectonics, volcanic type and intracrustal strong seismicity type, so it becomes the epitome of global earthquake prediction research, rarer. In this paper, according to the data of ANSS earthquake catalogue in the United States, using the Seismo-Geothermic Theory and its methods, the images were processed such as the planar distribution images and the three-dimensional images of the general earthquakes, subcrustal earthquakes, intracrustal strong earthquakes and volcanic eruption and the sequence diagrams of subcrustal earthquakes in the study area, as well as theory explanation of their relations with the San Andreas Fault. According to this idea, the volcanic origin and precursory information of U01 mini seismic cone tectonic were firstly studied, then the causes of intracrustal strong seismicity of U02 mini seismic cone tectonic and their migration rules were studied. The precursory information of M7.1 earthquake on July 6, 2019, was analyzed and summarized in U02 mini seismic cone tectonic, and a basic method for handling similar events in the future was given. In this paper, it thinks strong earthquake and volcanic disaster are from deep mantle heat energy, rather than the result of the independence movement of surface structure. Therefore, it finds the most natural energy of causes of seismicity and volcanic activity and opens a new direction for the prediction research of earthquakes and volcanoes.
    • WANG Ping; LIU Shaofeng
    • 摘要: We all live on one planet and geology has no borders.Countries that reside on different continents share the same architecture beneath the surface;they were once neighbors with common foundations.Interoperable geological data are now freely available to everyone for the benefit of society,demonstrating that geoscience can address both global and regional problems.Whilst increasingly large datasets("Big Data")provide clear opportunities(e.g.,Spina,2018).
    • Galina L. Kirillova
    • 摘要: Complicated structure of Priamurye is described as series of repeated tectonic plates. Fragments of these plates are presented in the Gorin and Lower Amurian zones. It is typical accretionary complexes. Three main tectono stratigraphic systems can be distinguished: a system of oceanic plate, a system of oceanic plate cover during its approach to the subduction zone (siliceous mudstone), and the overlying terrigenous formations.
    • Wenzheng Jin; Junpeng Wang; Zehong Cui; Zhixu Ye
    • 摘要: In order to reveal the nature of the segmentation of Longmen Mountains Thrust Belt caused by the three nappes (Jiaoziding, Jiudingshan, and Baoxing Nappe), several methods are applied in this paper, including field investigation, seismic explanation and balanced crossed section, etc. Results of research reveal that nappes in Longmen Mountains vary in geometry, kinematics, and dynamics. Jiaoziding Nappe has generally behaved in a ductile manner, whereas Jiudingshan Nappe has been rigid, and the rheology of Baoxing Nappe has been intermediate between that of the other two nappes. The development of nappes has resulted in tectonic segmentation of Longmen Mountains: the main structural style of the northern segment is thrust faulting, with Jiaoziding Nappe representing a giant syncline. Given its ductility, it absorbed lots of stress, with the least amount of tectonic shortening in the SE part of the nappe. In the middle segment, the deformation is controlled by the rigid Jiudingshan Nappe, whose frontal area records lots of tectonic shortening. Deformation in the southern segment is intermediate in character between that of the other two segments, characterized by horizontal zonation, as demonstrated by fault development, and vertical stratification, which indicates that fault development was controlled by lithology.
    • Huantong Li; Xiaoyan Zou; Jiafeng Mo; Yifan Wang; Fei Chen
    • 摘要: This article discusses in detail chemical composition, molecular structure, microstructure phenomena, estimate of the palaeo-stress, paleo-temperature and the strain rate to deepen the knowledge for the correlation of coal deformation and metamorphism with structural environment in Xinhua Hunan by coal quality analysis, XRD and SEM methods, which provide dependable theoretical foundation for coal resource exploitation and utilization. The results show that 1) d002 value of six coal samples is from 3.36 to 3.39 nm, coal resolved itself into aphanitic graphite with the increase of coal rank during coalification, which is characterized by graphite flakes, and the crystallite size is from 50 nm to 250 nm;A certain degree of 3R-structure content is increases and the crystallite size is extend with the coalification process, but RH-structure content is decreased;2) the tectonic environment of research area belongs to the ductile-brittle deformation, which was characterized by low temperature, low stress, high strain rate;3) Tianlongshan magmatic intrusion provided heat source, its side-extrusion made the molecules structure of coal ordering, distance between layers decreased, finally it caused the formation of aphanitic graphite.
    • Somaye Kazemi Koohbanani; Seyed Jamal Sheikhzakariee; Mohammad Hashem Emami; Rahim Dabiri
    • 摘要: The KoheSiah Volcanoes are located in the North of Qorveh city in the west of Iran. The KoheSiah volcanoes include several craters bearing domes located in the Kordestan Province, between latitudes 35°23'13.54” to 35°21'26.63”N and longitudes 47°54'38.26”E to 47°56'01.42”E. Based on the petrographic and geochemical analysis, the volcanic rocks in the KoheSiah area are classified as basalt, Alkali basalt, trachy-andesites and mugearite. The studied samples are alkaline with sodic to potasic feature based on Na2O/K2O ratios and belonging to Shoshonite series. Most of the alkaline volcanic rocks in the study area fall in the field of within in plate basalts (WPB) and represent of a mantle metasomatism trend associated with variable degrees in the partial melting of an enriched mantle source.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号