首页> 中国专利> 一种基于微生物测试的煤矿突水水源判别方法

一种基于微生物测试的煤矿突水水源判别方法

摘要

本发明涉及煤矿突水水源判别技术领域,具体涉及一种基于微生物测试的煤矿突水水源判别方法,主要包括以下步骤:确定煤矿受威胁的含水层、对受威胁的含水层进行抽水检测、建立不同含水层水样细菌总数与四个因素的函数关系、煤矿发生突水时对出水水样进行检测、判断煤矿突水水源、采取公知的防治水措施保障煤矿矿井安全不受水害威胁;本发明通过建立不同含水层水样细菌总数与溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个因素的函数关系,在煤矿发生突水时,对出水水样进行检测,从而快速判断出煤矿突水水源,操作简单、检测方便、检测准确度更高,同时不会破坏环境。

著录项

  • 公开/公告号CN112881627B

    专利类型发明专利

  • 公开/公告日2022.09.27

    原文格式PDF

  • 申请/专利权人 六盘水师范学院;

    申请/专利号CN202110036895.4

  • 申请日2021.01.12

  • 分类号G01N33/18(2006.01);

  • 代理机构北京快易权知识产权代理有限公司 11660;

  • 代理人衣秀丽

  • 地址 553004 贵州省六盘水市钟山区明湖路六盘水师范学院

  • 入库时间 2022-11-28 17:49:28

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-27

    授权

    发明专利权授予

说明书

技术领域

本发明涉及煤矿突水水源判别技术领域,具体涉及一种基于微生物测试的煤矿突水水源判别方法。

背景技术

我国煤炭开采过程中受到多种充水水源威胁,有的突水水源来自较强的富水性的含水层,有的突水水源来自较弱的富水性的含水层,对矿井的影响不相同。为了准确判断突水水源,继而有针对性的采用相应的防治措施开展矿井水害防治。

目前,针对煤矿突水水源的判别有很多种方法,但采用的判别因素主要包括主量成分、微量成分和有机物成分,这些因素使用是有以下问题:(1)主量成分的区分度不太高,特别是含水层的岩性相差不大时,容易出现错误判断;(2)微量成分不易快速检测,需要的仪器较为昂贵,检测过程漫长,对水害的快速防治不利;(3)有机物成分天然含量相对较少的含水层无法采用,且检测时间长、费用高,若投放有机物则有污染风险。

煤矿突水水源的水质受其所在岩体的矿物成分影响严重,当含水层所在岩土体介质相似时很难区分。但水中除各类化学成分外,还有大量的微生物。自由微生物的数量与地下水的流量、突水过程中溶解氧量、水体受突水点的温度及环境变化后的时间有较大的关系。这些关系受微生物基础量、类型等影响,不同的水文地质条件下微生物的基础量和类型有差异。比如采空区水来自于某个含水层,但在封闭的环境下微生物的数量和优势类群有所变化,这对于突水水源判别有较强的类比作用。

基于此,本发明设计了一种基于微生物测试的煤矿突水水源判别方法,以解决上述问题。

发明内容

本发明的目的在于解决上述背景技术中提出的问题,提供了一种基于微生物测试的煤矿突水水源判别方法。

为实现上述目的,本发明提供如下技术方案:

一种基于微生物测试的煤矿突水水源判别方法,包括以下步骤:

步骤一、确定煤矿受威胁的含水层;

步骤二、对受威胁的含水层进行抽水检测,在不同溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个变量变化下进行抽水检测;

步骤三、建立不同含水层水样细菌总数与溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个因素的函数关系;

步骤四、煤矿发生突水时,对出水水样进行检测;

步骤五、判断煤矿突水水源,依据所述步骤三建立的不同含水层的函数,计算出各含水层函数推演的细菌总数,并与实测的水样细菌总数对比,从而判定突水水源;

步骤六、针对所述步骤五判定的突水水源,采取公知的防治水措施,保障煤矿矿井安全不受水害威胁。

进一步地,所述步骤一中煤矿受威胁的含水层的确定方法为通过导水裂隙带和突水系数确定顶板、底板和采空区是否威胁煤矿开采,从而确定煤矿受威胁的含水层。

进一步地,所述步骤二中每个变量的采样个数均不少于20个。

进一步地,所述步骤二中检测的内容包括水层水样的溶解氧量和细菌总数。

进一步地,所述步骤二中检测样本在送检过程中处于密封状态,同时使得检测样本温度保持在出水点的水温度。

进一步地,所述步骤四中出水水样进行检测的内容包括突水点的出水流量、出水点的水温度、取样后到检测前的时间、水中溶解氧和细菌总数,所述出水水样在送检过程中处于密封状态,同时使得出水水样温度保持在出水点的水温度。

进一步地,所述步骤五中判定突水水源的方法为将出水水样中的实测细菌总数与各含水层函数推演的细菌总数进行对比,数值最接近的推演的细菌总数对应的含水层判定为本次突水水源;若有两个及以上推演的细菌总数与实测细菌总数差值相近,则改变取样后到检测前的时间或溶解氧量来重新实测,并对比推演结果,直至区分出突水水源。

与现有技术相比,本发明的有益效果是:本发明通过建立不同含水层水样细菌总数与溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个因素的函数关系,在煤矿发生突水时,对出水水样进行检测,从而快速判断出煤矿突水水源,操作简单、检测方便、检测准确度更高,同时不会破坏环境。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明方法流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

请参阅图1,本实施例提供一种技术方案:某煤矿开采煤层时,受下伏的茅口灰岩水和采空区水威胁,其中茅口灰岩富水性强,需要采用注浆封堵方法,而采空区水的以静储量为主,可以通过放水治理。为判断突水水源是什么水源,开展了以下方法:

步骤一、确定煤矿受威胁的含水层;通过计算,导水裂隙带发现裂隙带范围内有采空区水威胁矿井安全,通过突水系数确定底板茅口灰岩含水层对矿区有威胁。

步骤二、对受威胁的含水层进行抽水检测,在不同溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个变量变化下进行抽水检测;抽水在不同温度的地点,采用曝气法产生不同的溶解氧,用不同的泵产生不同的出水流量,四个因素均有变化的情况下开展抽水,每个变量的采样个数均不少于20个。检测的内容包括水层水样的溶解氧量和细菌总数。检测样本在送检过程中处于密封状态,同时使得检测样本温度保持在出水点的水温度。

步骤三、建立不同含水层水样细菌总数与溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个因素的函数关系;

步骤四、煤矿某工作面发生突水时,对出水水样进行检测;检测的内容包括突水点的出水流量、出水点的水温度、取样后到检测前的时间、水中溶解氧和细菌总数,出水水样在送检过程中处于密封状态,同时使得出水水样温度保持在出水点的水温度。

步骤五、判断煤矿突水水源,依据步骤三建立的不同含水层的函数,计算出各含水层函数推演的细菌总数,并与实测的水样细菌总数对比,从而判定突水水源;将出水水样中的实测细菌总数与各含水层函数推演的细菌总数进行对比,数值最接近的推演的细菌总数对应的含水层判定为本次突水水源;若有两个及以上推演的细菌总数与实测细菌总数差值相近(绝对值相差不超过5%),则改变取样后到检测前的时间或溶解氧量来重新实测,并对比推演结果,直至区分出突水水源。经过计算采空区含水层函数计算值比茅口灰岩含水层函数计算值更接近与实测值,且绝对值相差大于5%。因此判定本次突水水源为采空区水源。

步骤六、针对步骤五判定的突水水源,采取采空区水探放和强排方法,保障煤矿矿井安全不受水害威胁。

本发明通过建立不同含水层水样细菌总数与溶解氧量、出水流量、出水点的水温度和取样后到检测前的时间四个因素的函数关系,在煤矿发生突水时,对出水水样进行检测,从而快速判断出煤矿突水水源,操作简单、检测方便、检测准确度更高,同时不会破坏环境。

在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号