首页> 中国专利> 一种考虑输入时滞的电液比例伺服阀位置轴控方法

一种考虑输入时滞的电液比例伺服阀位置轴控方法

摘要

本发明公开了一种考虑输入时滞的电液比例伺服阀位置轴控方法,该轴控方法基于构建的输入时滞补偿辅助系统,融合动态面控制思想,设计兼顾输入时滞补偿与未知扰动抑制的非线性鲁棒位置轴控控制器。针对电液比例伺服阀位置轴控问题,本发明既能保证对系统输入时滞主动补偿与未知干扰抑制,提高系统抗干扰能力,又能避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能。

著录项

  • 公开/公告号CN114943146A

    专利类型发明专利

  • 公开/公告日2022-08-26

    原文格式PDF

  • 申请/专利权人 南京理工大学;

    申请/专利号CN202210539011.1

  • 发明设计人 姚建勇;杨晓伟;

    申请日2022-05-18

  • 分类号G06F30/20(2020.01);G06F17/18(2006.01);G06F17/16(2006.01);G06F17/11(2006.01);F15B13/02(2006.01);

  • 代理机构南京理工大学专利中心 32203;

  • 代理人朱沉雁

  • 地址 210094 江苏省南京市玄武区孝陵卫200号

  • 入库时间 2023-06-19 16:31:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-13

    实质审查的生效 IPC(主分类):G06F30/20 专利申请号:2022105390111 申请日:20220518

    实质审查的生效

说明书

技术领域

本发明涉及机电伺服控制技术领域,具体涉及一种考虑输入时滞的电液比例伺服阀位置轴控方法(ITDRC)。

背景技术

电液比例伺服阀轴控系统凭借其功率密度大、力/转矩输出大、动态响应快等特性,在机器人、重型机械、高性能加载测试设备等领域有着举足轻重的地位。电液比例伺服阀轴控系统是一个典型的非线性系统,包含许多非线性特性和建模不确定性。非线性特性包含有延迟、饱和等输入非线性、比例伺服阀流量压力非线性,摩擦非线性等,建模不确定性包括参数不确定性和不确定性非线性,其中参数不确定性主要有负载质量、执行器的粘性摩擦系数、泄漏系数、伺服阀流量增益、液压油弹性模量等,不确定性非线性主要有未建模的摩擦动态、系统高阶动态、外干扰及未建模泄漏等。电液比例伺服阀轴控系统向高精度、高频响发展时,系统呈现的非线性特性对系统性能的影响越显著,而且建模不确定性的存在会使以系统名义模型设计的控制器不稳定或降阶,因此电液比例伺服阀轴控系统非线性特性和建模不确定性是限制系统性能提升的重要因素。随着工业及国防领域技术水平的不断进步,以往基于传统线性理论设计的控制器已逐渐不能满足系统的高性能需求,因此必须针对电液比例伺服阀轴控系统中的非线性特性研究更加先进的非线性控制策略。

针对电液比例伺服阀轴控系统的非线性控制问题,许多方法相继被提出。其中自适应控制方法对于处理参数不确定性问题是非常有效的方法,能够获得渐近跟踪的稳态性能,但是对于外负载干扰等不确定性非线性却显得力不从心,当不确定性非线性过大时可能会使系统失稳,而实际的电液比例伺服阀轴控系统都存在不确定性非线性,因此自适应控制方法在实际应用中并不能获得高精度的控制性能;作为一种鲁棒控制方法,经典滑模控制可以有效地处理任何有界的建模不确定性,并获得渐近跟踪的稳态性能,但是经典滑模控制所设计的不连续的控制器容易引起滑模面的颤振问题,从而恶化系统的跟踪性能,同时滑模方法并未考虑输入时滞对控制性能的影响;为了同时解决参数不确定性和不确定性非线性的问题,自适应鲁棒控制方法被提出,该控制方法在两种建模不确定性同时存在的情况下可以使系统获得确定的暂态和稳态性能,如要获得高精度跟踪性能则必须通过提高反馈增益以减小跟踪误差,由于测量噪声的存在,该增益取得过大往往会导致高增益反馈从而造成控制输入的抖振,进而恶化控制性能,甚至引起系统失稳。

发明内容

本发明提出了一种考虑输入时滞的电液比例伺服阀位置轴控方法,既能保证对系统输入时滞主动补偿与未知干扰抑制,提高系统抗干扰能力,又能避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能。

实现本发明目的的技术解决方案为:一种考虑输入时滞的电液比例伺服阀位置轴控方法,包括以下步骤:

步骤1、建立电液比例伺服阀位置轴控系统的数学模型,转入步骤2;

步骤2、基于电液比例伺服阀位置轴控系统的数学模型,考虑输入时滞的的非线性鲁棒位置轴控控制器,转入步骤3;

步骤3、运用李雅普诺夫稳定性理论进行非线性鲁棒位置轴控控制器稳定性证明,得到系统跟踪误差渐近稳定的结果。

本发明与现有技术相比,其显著优点是:(1)可实现输入时滞主动补偿、未知扰动抑制,抗干扰能力强;(2)避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能,仿真结果验证了其有效性。

附图说明

图1是本发明考虑输入时滞的电液比例伺服阀位置轴控方法原理示意图。

图2是本发明电液比例伺服阀轴控系统原理简图。

图3是本发明所设计的ITDRC控制器作用下系统输出对期望指令的跟踪过程曲线图。

图4是本发明所设计的ITDRC控制器作用下系统的跟踪误差随时间变化的曲线图。

图5是本发明所设计的ITDRC控制器和传统PID控制器作用下系统的跟踪误差对比曲线图。

图6是本发明所设计的ITDRC控制器作用下系统的控制输入曲线图。

具体实施方式

下面结合附图及具体实施例对本发明作进一步详细说明。

结合图1和图2,本发明考虑输入时滞的电液比例伺服阀位置轴控方法,包括以下步骤:

步骤1,建立电液比例伺服阀位置轴控系统的数学模型。

步骤1-1、所述电液比例伺服阀位置轴控系统应用于大型工业重载机械设备直线运动,其中负载与液压油缸上活塞杆固连,电液比例伺服阀控制液压油缸上活塞杆运动,从而驱使负载运动。

根据牛顿第二定律,电液比例伺服阀位置轴控系统的力平衡方程为:

式(1),m表示负载的质量,y表示液压油缸活塞杆的位移,

则式(1)改写为:

电液比例伺服阀位置轴控系统中,忽略油缸油液外泄漏,则压力动态方程为:

式(3)中,β

Q

其中,电液比例伺服阀阀系数

忽略电液比例伺服阀阀芯动态,假设作用于阀芯的带有输入延时的控制输入

式(6),中间变量k

步骤1-2、定义状态变量:

式(7),

为便于设计控制器与未知动态观测器,作如下假设:

假设1:系统期望跟踪位置指令x

假设2:D

|D

式(8),δ

转入步骤2。

步骤2,基于电液比例伺服阀位置轴控系统的数学模型,设计考虑输入时滞的的非线性鲁棒位置轴控控制器,具体步骤如下:

步骤2-1、为实现对电液比例伺服阀位置轴控系统中输入时滞的主动补偿,构建具有如下形式的辅助系统:

式(9),λ

步骤2-2、为便于设计控制器,定义系统的跟踪误差z

式(10),滤波增益τ

对z

设计虚拟控制α

式(12),增益k

将式(12)带入式(11)可得:

步骤2-3、对z

设计如下非线性滤波器:

式(15),滤波增益τ

设计虚拟控制α

式(16),增益k

将式(16)代入式(14),得:

步骤2-4、对z

根据式(18),则考虑输入时滞的的非线性鲁棒位置轴控控制器u为:

式(19),增益k

将式(19)代入式(18)中得:

转入步骤3。

步骤3,运用李雅普诺夫稳定性理论进行非线性鲁棒位置轴控控制器稳定性证明,得到系统跟踪误差渐近稳定的结果,具体如下:

定义李雅普诺夫函数如下:

对式(21)求导并将式(10)、(13)、(15)、(17)和(20)代入可得:

考虑到|D

注意到

可得

将式(24)和式(25)代入式(23),可得

定义中间变量z和Λ分别为:

z=[z

式(28),中间变量Λ

通过调整增益k

式(30),中间变量Φ=z

对式(30)两侧分别积分,可得:

由式(31)可知V是有界的,Φ积分有界的。进而可以得出系统所有信号都是有界的。因此,Φ是一致连续的。根据Barbalat引理可得,当时间趋向于正无穷的时候,跟踪误差z

因此有结论:通过调整增益k

实施例

为考核所设计的控制器性能,在仿真中电液比例伺服阀位置轴控系统物理参数如表1所示:

表1系统物理参数

给定系统的期望指令为

仿真中取如下的控制器作对比:

考虑输入时滞的电液比例伺服阀位置轴控控制器(ITDRC):取增益k

PID控制器:PID控制器参数的选取步骤是:首先在忽略电液比例伺服阀轴控系统非线性动态的情况下,通过Matlab中的PID参数自整定功能获得一组控制器参数,然后在将系统的非线性动态加上后对已获得的自整定参数进行微调使系统获得最佳的跟踪性能。选取的控制器参数为k

系统的期望指令、ITDRC控制器跟踪误差、ITDRC控制器与PID控制器的跟踪误差对比分别如图3、图4和图5所示。由图4可知,在ITDRC控制器作用下,比例伺服阀轴控系统的位置输出对指令的跟踪精度很高,稳态跟踪误差的幅值约为8×10

图6是ITDRC控制器作用下电液比例伺服阀轴控系统控制输入随时间变化的曲线图,从图中可以看出,所获得的控制输入是低频连续的信号,更利于在实际应用中执行。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号