首页> 中国专利> 水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的应用

水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的应用

摘要

水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的应用,涉及水稻基因工程领域,特别涉及水稻激酶基因OsMKKK70及其同源基因的新用途。对提高水稻低温胁迫下的产量提供了重要理论依据。本发明发现水稻激酶基因OsMKKK70及其同源基因OsMKKK62、OsMKKK55能够负向调控水稻孕穗期耐冷性。OsMKKK70基因、OsMKKK62基因、OsMKKK55基因共同参与调控水稻孕穗期耐冷。OsMKKK70及其同源基因OsMKKK62、OsMKKK55通过负向调控低温胁迫下GA的生物合成进而影响花药中的GA含量,最终负向调控水稻孕穗期耐冷性。本发明应用于提高水稻低温胁迫下的产量。

著录项

  • 公开/公告号CN114908069A

    专利类型发明专利

  • 公开/公告日2022-08-16

    原文格式PDF

  • 申请/专利号CN202210607466.2

  • 申请日2022-05-31

  • 分类号C12N9/12(2006.01);C12N15/84(2006.01);A01H5/00(2018.01);A01H5/02(2018.01);A01H6/46(2018.01);

  • 代理机构哈尔滨市文洋专利代理事务所(普通合伙) 23210;

  • 代理人何强

  • 地址 150081 黑龙江省哈尔滨市哈平路138号

  • 入库时间 2023-06-19 16:25:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-04-25

    授权

    发明专利权授予

  • 2022-09-02

    实质审查的生效 IPC(主分类):C12N 9/12 专利申请号:2022106074662 申请日:20220531

    实质审查的生效

说明书

技术领域

本发明涉及水稻基因工程领域,特别涉及水稻激酶基因OsMKKK70及其同源基因的新用途。

背景技术

水稻是一种重要的粮食作物,世界上一半以上的人口以其为主食。黑龙江省是我国水稻的重要商品粮区,但近年来,由于气候变化异常,孕穗期冷害已经成为了当地主要的自然灾害,平均每3-4年就会发生一次。因此,解决孕穗期冷害问题,挖掘耐冷基因及解析其功能,对于提高水稻的产量,保证粮食安全具有十分重要的现实意义。GA,即赤霉素,是常见的植物激素,正调控水稻孕穗期耐冷性,低温处理会导致水稻花药中主要的有生物活性的GA

水稻在孕穗期若遇上低温冷害,结实率大幅下降,容易造成水稻减产。因此研究孕穗期低温胁迫对于水稻产量具有重要的影响,对培育耐低温水稻品种以保障我国粮食高产具有重要意义。

发明内容

本发明的目的是提供水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的新应用,对提高水稻低温胁迫下的产量提供了重要理论依据,具有广阔的应用前景。

本发明提供水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的应用。

进一步的,OsMKKK70基因过表达转基因水稻花粉育性变差、结实率下降。

进一步的,OsMKKK70及其同源基因OsMKKK62的双突变体低温处理后花粉育性及结实率都显著高于野生型。

进一步的,OsMKKK70及其同源基因OsMKKK62、OsMKKK55三突变体低温处理后花粉育性及结实率都显著高于野生型。

进一步的,OsMKKK70及其同源基因OsMKKK62的双突变体花药中的GA含量显著高于野生型。

进一步的,OsMKKK70及其同源基因OsMKKK62、OsMKKK55三突变体花药中的GA含量显著高于野生型。

本发明的有益效果:

本发明首次发现水稻激酶基因OsMKKK70及其同源基因OsMKKK62、OsMKKK55能够负向调控水稻孕穗期耐冷性。OsMKKK70基因、OsMKKK62基因、OsMKKK55基因共同参与调控水稻孕穗期耐冷。

本发明发现OsMKKK70基因过表达转基因水稻花粉育性变差、结实率下降,表现出GA缺失的表型;

OsMKKK70及其同源基因OsMKKK62的双突变体及OsMKKK70及其同源基因OsMKKK62、OsMKKK55三突变体低温处理后花粉育性及结实率都显著高于野生型;GA含量的测定发现,低温处理后OsMKKK70及其同源基因OsMKKK62的双突变体及OsMKKK70及其同源基因OsMKKK62、OsMKKK55三突变体花药中的GA含量显著高于野生型,qRT-PCR实验表明,低温处理后OsMKKK70及其同源基因OsMKKK62的双突变体及OsMKKK70及其同源基因OsMKKK62、OsMKKK55三突变体中GA相关合成基因KA0、GA20ox1、GA20ox3、GA3ox1的表达量显著高于野生型,OsMKKK70及其同源基因OsMKKK62、OsMKKK55通过负向调控低温胁迫下GA的生物合成进而影响花药中的GA含量,最终负向调控水稻孕穗期耐冷性。

水稻激酶基因OsMKKK70及其同源基因OsMKKK62、OsMKKK55作为水稻孕穗期耐冷性负调控因子的这一发现,挖掘了OsMKKK70及其同源基因OsMKKK62、OsMKKK55的新功能,对提高水稻低温胁迫下的产量提供了重要理论依据,具有广阔的应用前景。

附图说明

图1为OsMKKK70受低温诱导图;

图2为龙粳11、OsMKKK70过表达转基因水稻穗型及花药形态图;

图3为龙粳11、OsMKKK70过表达转基因水稻结实率统计结果;

图4为osmkkk70/62双突变体植株的测序鉴定结果;

图5为osmkkk70/62/55三突变体植株的测序鉴定结果;

图6为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻正常条件及15℃低温处理后的穗型图;

图7为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻正常条件及15℃低温处理后的结实率统计结果;

图8为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在15℃低温处理后的花药活力图;

图9为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在15℃低温处理后的花药活力统计结果;

图10为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在15℃低温处理后的花药形态图;

图11为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在15℃低温处理后的花药长度图;

图12为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在15℃低温处理后的花药长度统计结果;

图13为龙粳11、osmkkk70/62双突变体正常条件及18℃低温处理后花药中GA

图14为龙粳11、osmkkk70/62双突变体正常条件及18℃低温处理后花药中GA

图15为龙粳11、osmkkk70/62双突变体正常条件及18℃低温处理后花药中GA

图16为龙粳11、osmkkk70/62双突变体正常条件及18℃低温处理后花药中GA

图17为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中GA生物合成基因KAO的表达量检测结果;

图18为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中GA生物合成基因GA20ox1的表达量检测结果;

图19为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中GA生物合成基因GA20ox3的表达量检测结果;

图20为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中GA生物合成基因GA3ox1的表达量检测结果;

图21为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中GAMYB基因的表达量检测结果;

图22为龙粳11、osmkkk70/62双突变体、osmkkk70/62/55三突变体水稻在正常条件及15℃低温处理后幼穗中CYP703A3基因的表达量检测结果。

具体实施方式

下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例1:水稻孕穗期负调控激酶基因OsMKKK70的生物学功能验证:

OsMKKK70过表达转基因植株的获得方法如下:

一、载体构建:以水稻品种龙粳11的cDNA为模板,参照TaKaRa公司的

正向引物F1:5'-GTTACTTCTGCACTAGGTACCATGGCTAAGCAGCTCAGGC-3'

反向引物R1:5'-TCTTAGAATTCCCGGGGATCCTCAGCATGTGGTTGCCAATT-3'

二、目的载体转化农杆菌EHA105:将EHA105感受态从-80℃冰箱取出,置于冰上融化;将500ng~1μg的目的质粒加入100μl EHA105感受态中,冰上放置30min;迅速置于液氮中5min;从液氮中取出,迅速置于37℃水预锅中水浴5min;冰上2min;加入800μl液体LB培养基,置于全温震荡器(购自MKN公司)中,28℃,120rpm孵育4~5h;离心,弃大部分上清,将剩余菌液涂抹于含有卡那霉素(50μg/ml)(购自Amresco)和利福平(50μg/ml)(购自Amresco)的LB固体培养基上,28℃培养3天。

三、待长出菌落后,进行菌落PCR鉴定,鉴定出阳性克隆;挑取阳性克隆至加有相应抗生素和利福平的液体LB培养基中,28℃,180rpm培养16h左右,此时的菌液可以用30%的甘油按1:1的体积比进行保存,存至-80℃冰箱,侵染愈伤组织时,从-80℃取出进行活化即可。

四、农杆菌侵染水稻愈伤组织:从-80℃冰箱取出目的存菌,按1:100的比例加入含有卡那霉素(50μg/ml)和利福平(50μg/ml)的液体LB培养基中,180rpm,28℃培养过夜;将菌液培养至肉眼看上去像橙汁一样的颜色(OD=1.0左右),方可从培养箱中取出;取500ul左右菌液至1.5ml离心管中,5000rpm,28℃,离心3min,弃上清,可以看到管底有白色的菌团;用300μl含有20μg/ml的乙酰丁香酮(购自Aldrich)的液体共培培养基轻轻吹打管底菌团,使其均匀的悬浮在液体培养基中;挑选生长状态良好的愈伤组织至50ml离心管中,大约至离心管刻度5ml左右;加入20ml含有20μg/ml的乙酰丁香酮的液体共培培养基,然后将上述悬浮好的300μl菌液全部加入到50ml离心管中;持续轻柔混匀2~3min,以进行侵染。将液体共培培养基倒掉,然后将侵染好的愈伤组织转移至铺有滤纸的培养皿中,吸附多余的培养基,这一过程大约需要1min左右;在固体共培培养基上铺一层滤纸,使滤纸浸透,然后将上述侵染好的愈伤组织转移至此固体培养基上;28℃暗培养2~3天。

五、被侵染水稻愈伤组织的恢复培养:被侵染的愈伤暗培养2~3天后,将愈伤颗粒转移至50ml离心管中;用含有400μg/ml羧卞青霉素(购自Amresco)的无菌水清洗愈伤组织4~5遍,每次持续1min左右,进行除菌;再用无菌水清洗愈伤组织2~3遍,转移至铺有滤纸的培养皿上,吸干多余水分;将上述愈伤组织转移至含有400μg/ml羧卞青霉素的恢复培养基上,28℃人工气候培养箱(24h光培养)恢复培养4~5天。

六、被侵染水稻愈伤组织的筛选培养:恢复培养4~5天后,将恢复培养基上的愈伤组织转移至含有400μg/ml羧卞青霉素和50μg/ml潮霉素(购自Roche)的筛选培养基上;将其转移至28℃人工气候培养箱(24h光培养)中培养30天左右。

七、抗性水稻愈伤组织的分化培养:将筛选培养基上的抗性愈伤转移至分化培养基上,每瓶移至一簇愈伤;将其置于28℃人工气候培养箱(24h光培养)中培养30天左右,即可分化出转基因苗。

检测水稻孕穗期15℃低温处理1h、3h后穗部OsMKKK70的表达情况发现,OsMKKK70受低温调控瞬时诱导其表达(如图1所示)。观察野生水稻品种龙粳11、龙粳11背景下的OsMKKK70过表达转基因植株发现,OsMKKK70过表达植株相比于对照材料龙粳11结实率显著下降(如图2、3所示)。这暗示着OsMKKK70极有可能参与水稻孕穗期耐冷性的调控。

将OsMKKK70、OsMKKK62、OsMKKK55基因的CDS序列输入CRISPR Primer Designer软件,设计3对靶位点引物(F2和R2;F3和R3;F4和R4),用于后续敲除载体的构建。目的载体转化农杆菌EHA105;采用农杆菌介导的遗传转化方法在野生水稻品种龙粳11背景下通过CRISPR-CAS9技术获得osmkkk70 osmkkk62双突变体植株及osmkkk70 osmkkk62 osmkkk55三突变体植株,测序鉴定结果如图4、5所示。

正向引物F2:5'-GGCACCCGAAATCCGCGATCTTGGCCC-3'

反向引物R2:5'-AAACGGGCCAAGATCGCGGATTTCGGG-3'

正向引物F3:5'-GCCGGGCAATGGCTAAGCAGCTC-3'

反向引物R3:5'-AAACGAGCTGCTTAGCCATTGCCT-3'

正向引物F4:5'-GTTGCCGACCATGATGTTCCTGGCCTT-3'

反向引物R4:5'-AAACAAGGCCAGGAACATCATGGTCGG-3'

以野生水稻品种龙粳11、龙粳11背景下的osmkkk70 osmkkk62双突变体植株及osmkkk70 osmkkk62 osmkkk55三突变体植株为实验材料,在水稻主蘖生长到水稻的剑叶与倒二叶叶枕距为-5~0cm(即花药处于减数分裂期至单核期)时对水稻进行15℃低温处理4天、5天后转移回正常的生长条件,在成熟时统计主穗的总粒数、实粒数、结实率。结果如图6、7所示,图7中□表示龙粳11,

在同样的处理条件下,处理4天、5天后转移回正常的生长条件,在开花的前一天(即花药处于三核期)取样,将其固定在FAA固定液中,用1%I

取样同样低温处理条件后,处于开花前一天(即花药处于三核期)的花药在Olympus SZX16显微镜下进行观察,并统计花药长度。结果如图所示10、11、12所示,图12中□表示龙粳11,

以上结果表明,OsMKKK70及其同源基因OsMKKK62、OsMKKK55能够负向调控水稻孕穗期耐冷性。

实施例2:OsMKKK70及其同源基因OsMKKK62、OsMKKK55负调控水稻花药中GA含量检测:

以野生水稻品种龙粳11、及其遗传背景下的osmkkk70 osmkkk62双突变体植株为实验材料在水稻主蘖生长到水稻的剑叶与倒二叶叶枕距为-8~-6cm(即花药处于减数分裂期)时对水稻进行18℃低温处理15天(花药处于三核期),取样大约30株水稻主蘖的花药在武汉绿剑公司(http://www.greenswordcreation.com)通过Thermo Scientific Ultimate3000 UHPLC及TSQ Quantiva检测花药中的GA含量。

结果如图13-图16所示,其中

实施例3:OsMKKK70及其同源基因OsMKKK62、OsMKKK55负调控水稻中GA生物合成检测:

一、以野生水稻品种龙粳11、及其遗传背景下的osmkkk70 osmkkk62双突变体植株及osmkkk70 osmkkk62 osmkkk55三突变体植株为实验材料在水稻主蘖生长到水稻的剑叶与倒二叶叶枕距为-5~0cm(即花药处于减数分裂期至单核期)时对水稻进行15℃低温处理4天,取样其主蘖的幼穗及相同叶枕距的在正常条件下生长的水稻主蘖的幼穗,参照购买自Invitrogen公司的TRIzol试剂盒的操作手册提取幼穗总RNA;

二、采用DNaseⅠ处理步骤一提取的总RNA;

三、取1μg步骤二处理后的总RNA用于cDNA的合成,cDNA的合成操作按照购买自BDBiosciences Clontech公司的BD SMART

四、以获得的cDNA为模板通过4个GA生物合成基因及在花药中特异表达的OsGAMYB基因及其靶基因OsCYP703A3引物:OsKAO基因(正向引物F5与反向引物R5)、OsGA20ox1基因(正向引物F6与反向引物R6)、OsGA20ox3基因(正向引物F7与反向引物R7)、OsGA3ox1基因(正向引物F8与反向引物R8)、OsGAMYB基因(正向引物F9与反向引物R9)、OsCYP703A3基因(正向引物F10与反向引物R10)及水稻内参actin(正向引物F11与反向引物R11),采用SYBRGreen PCR master mix(TransStart)进行Quantitative real-time PCR;数据从Bio-Radchromo 4real-time PCR detector上获得;用2

正向引物F5:5'-CATCTCCGGCAAATCCT-3'

反向引物R5:5'-CCAGCCTCGACATCGC-3'

正向引物F6:5'-ATCGGCTGGAGATGAAGAGG-3'

反向引物R6:5'-CGGCTCATCTCGTGGCAGTA-3'

正向引物F7:5'-AATACCGCCACATGGGGGAGGT-3'

反向引物R7:5'-GTAGTGGTTCAGCCGCATCACC-3'

正向引物F8:5'-GACGATTCACCTCAACATGTTCCCT-3'

反向引物R8:5'-GGCTCTGCAGGATGAAGGTGAA-3'

正向引物F9:5'-GGAGGACGGACAACGAGAT-3'

反向引物R9:5'-GAGTGCGGGAACTGGAAGA-3'

正向引物F10:5'-AGACTTCGCTCGATTCTGCAC-3'

反向引物R10:5'-GCTTTAGCCCACACAAACTGA-3'

正向引物F11:5'-AGACCTTCAACACCCCTGCTATG-3'

反向引物R11:5'-TCACGCCCAGCAAGGTCG-3'

如图17、18、19、20、21和22所示,其中

以上实验结果说明,OsMKKK70及其同源基因OsMKKK62、OsMKKK55能够负向调控水稻花药中的GA含量,从而负调控水稻孕穗期耐冷性。

序列表

<110> 中国科学院东北地理与农业生态研究所

<120> 水稻激酶基因OsMKKK70及其同源基因在负向调控水稻孕穗期耐冷性中的应用

<141> 2022-05-31

<160> 22

<170> SIPOSequenceListing 1.0

<210> 1

<211> 40

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 1

gttacttctg cactaggtac catggctaag cagctcaggc 40

<210> 2

<211> 41

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 2

tcttagaatt cccggggatc ctcagcatgt ggttgccaat t 41

<210> 3

<211> 27

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 3

ggcacccgaa atccgcgatc ttggccc 27

<210> 4

<211> 27

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 4

aaacgggcca agatcgcgga tttcggg 27

<210> 5

<211> 23

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 5

gccgggcaat ggctaagcag ctc 23

<210> 6

<211> 24

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 6

aaacgagctg cttagccatt gcct 24

<210> 7

<211> 27

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 7

gttgccgacc atgatgttcc tggcctt 27

<210> 8

<211> 27

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 8

aaacaaggcc aggaacatca tggtcgg 27

<210> 9

<211> 17

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 9

catctccggc aaatcct 17

<210> 10

<211> 16

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 10

ccagcctcga catcgc 16

<210> 11

<211> 20

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 11

atcggctgga gatgaagagg 20

<210> 12

<211> 20

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 12

cggctcatct cgtggcagta 20

<210> 13

<211> 22

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 13

aataccgcca catgggggag gt 22

<210> 14

<211> 22

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 14

gtagtggttc agccgcatca cc 22

<210> 15

<211> 25

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 15

gacgattcac ctcaacatgt tccct 25

<210> 16

<211> 22

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 16

ggctctgcag gatgaaggtg aa 22

<210> 17

<211> 19

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 17

ggaggacgga caacgagat 19

<210> 18

<211> 19

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 18

gagtgcggga actggaaga 19

<210> 19

<211> 21

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 19

agacttcgct cgattctgca c 21

<210> 20

<211> 21

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 20

gctttagccc acacaaactg a 21

<210> 21

<211> 23

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 21

agaccttcaa cacccctgct atg 23

<210> 22

<211> 18

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 22

tcacgcccag caaggtcg 18

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号