首页> 中国专利> 身体参数检测传感器和用于检测身体参数的方法

身体参数检测传感器和用于检测身体参数的方法

摘要

一种用于检测生物测定参数的方法,包括以下步骤:在脊柱的椎骨上执行骨植入程序;在椎骨(10、20)处提供生物测定传感器(1-9);以及通过所述传感器在所述椎骨处测量生物测定参数。所述传感器能够测量相邻环境中的包括压力、张力、切变、相对位置、和脉管流量的参数。涉及所述生物测定参数的数据被传输至外源,并且对所述数据进行分析以评估所述椎骨的生物测定状况。可以在所述椎骨的横突(70)上设置一组传感器。

著录项

  • 公开/公告号CN104887235A

    专利类型发明专利

  • 公开/公告日2015-09-09

    原文格式PDF

  • 申请/专利权人 马丁·罗切;

    申请/专利号CN201510178035.9

  • 发明设计人 马丁·罗切;

    申请日2006-03-29

  • 分类号A61B5/103(20060101);A61B8/00(20060101);

  • 代理机构11330 北京市立方律师事务所;

  • 代理人刘莉婕;廖娟

  • 地址 美国佛罗里达州

  • 入库时间 2023-12-18 10:45:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-03-11

    未缴年费专利权终止 IPC(主分类):A61B 5/103 专利号:ZL2015101780359 申请日:20060329 授权公告日:20190607

    专利权的终止

  • 2019-06-07

    授权

    授权

  • 2015-10-07

    实质审查的生效 IPC(主分类):A61B5/103 申请日:20060329

    实质审查的生效

  • 2015-09-09

    公开

    公开

说明书

本申请是申请号为200680014491.9(PCT/US2006/011300)、申请日 为2006年3月29日、发明名称为“身体参数检测传感器和用于检测身体 参数的方法”的申请的分案申请。

技术领域

本发明涉及医疗卫生器材领域,尤其是,涉及外用和埋入传感器系统, 其用于检测生理(例如,肌肉骨骼)系统的具体参数并且确定活动的精确 解剖位置,以及涉及用于检测解剖位置参数的方法的领域。

背景技术

在美国专利No.6,621,278、No.6,856,141和No.6,984,993(Ariav的 专利并且转让给Nexense公司,即“Nexense的专利”)中公开了传感器技 术。

有益的是,将现有的传感器技术应用于生物测定数据传感应用,这样 卫生保健人员可以确定解剖位置的特征。

发明内容

因此,本发明的目的在于提供一种传感器系统,其能够检测具体参数 (例如,肌肉骨骼系统的参数),并且确定活动的精确解剖位置,以及提 供用于检测解剖位置的参数的方法,本发明克服了前述的迄今为止公开的 设备和这种通常类型的方法的缺点,并且本发明提供了外部应用和/或埋入 传感器,以向卫生保健供应者提供关于他们的病人的实时的信息。这些信 息可以包括病理处理和与外科程序和植入设备相关的信息。这些传感器可 以通过内部或外部机构启动,并且这些信息通过无线路径传播。所述传感 器系统将允许植入系统的早期介入或修正,并且可以使用现有的传感器。 例如,可以使用在Nexense专利中公开的传感器。

被认作是本发明的特征的其它技术特征可以在从属权利要求中提出。

尽管本发明在此示出和描述为在可以检测具体身体参数并且确定活 动的精确解剖位置的传感器系统中具体实施,以及为用于检测的方法,然 而这并不意味着限于示出的细节,这是因为在不脱离本发明的精神的情况 下,以及在权利要求书的等价范围和区域内,可以进行各种改型和结构变 化。

然而,当结合附图阅读时,本发明的构造和操作方法及其附加的目的 和优点将一起通过以下对具体实施例的说明而得到更好的理解。

附图说明

具体实施本发明的优点将通过本发明优选实施例的以下详细说明而 变得显而易见,这种说明应当结合附图进行考虑,其中:

图1为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的未 执行一体化的脊柱和传感器;

图2为图1的脊柱部分的示意性局部前后视图;

图3为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的椎 间骨架和传感器;

图4为图1的脊柱部分的示意性局部前后视图,其中在椎弓根螺钉中 具有根据本发明的传感器;

图5为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的椎 间盘植入物和传感器;

图6为根据本发明的传感器插入工具的示意性局部放大剖面图;

图7为通过图6的工具植入的、根据本发明的具有传感器的上股骨的 示意性局部剖面图;

图8为通过图6的工具植入的、根据本发明的具有传感器的椎骨的示 意性局部剖面图;

图9为根据本发明的在螺钉中的具有传感器的椎骨的示意性局部剖视 图;

图10为根据本发明的具有植入的传感器的股骨的示意性局部剖面图;

图11为根据本发明的具有传感器的椎骨的示意性局部剖面图;

图12为根据本发明的具有传感器的膝关节的示意性局部前后剖面图;

图13为根据本发明的具有传感器的膝关节的示意性局部侧向剖面图;

图14为根据本发明的具有传感器的髋关节的示意性局部剖面图;

图15为根据本发明的具有传感器的椎骨的示意性局部侧向剖面图;

图16为根据本发明的具有传感器的椎骨的示意性局部轴向剖面图;

图17为根据本发明的具有超声波有源传感器的膝关节的示意性局部 剖面图;

图18为超声波发射器和示出了膝关节的计算机屏幕的示意图,其中 膝关节具有根据本发明处理的超声波有源传感器;

图19为根据本发明的连结至可植入传感器体的手柄的示意性放大剖 面图;

图20为与传感器体分离的图19的手柄的示意性放大剖面图;

图21为红外可视系统的示意图;

图22为电磁可视系统的示意图;

图23为膝关节的局部部分隐藏的前视图;

图24为膝关节的局部部分隐藏的侧视图;

图25为韧带的局部侧视图;

图26为图25的韧带的局部侧视图,其中具有根据本发明的韧带传感 器夹具;

图27为图26的韧带和韧带传感器夹具的局部侧视图;

图28为图25的韧带的局部侧视图,其中附连有根据本发明的传感器;

图29为根据本发明的超声波套管系统的一部分的局部剖面图;

图30为根据本发明的单个传感器套管布置设备的一部分的局部剖面 图;

图31为图30的套管布置设备的一部分的局部剖面图,其中具有多个 传感器;

图32为根据本发明的多个传感器套管布置设备的一部分的局部剖面 图;

图33为开膝外科手术的局部侧视图,其中除去了软组织和软骨,并 且骨头通过根据本发明布置的传感器切割;

图34为根据本发明的套管针针尖的局部剖面图,其中容纳传感器元 件;

图35为用于一组传感器的插入物的局部剖面图;

图36为根据本发明的容纳一组传感器的切割器的示意性侧视图;

图37为骨头钻孔器的示意性侧视图;

图38为根据本发明植入髋部中的传感器系统的局部剖面图;

图39为根据本发明植入股骨中的传感器系统的局部剖面图;

图40为根据本发明用于布置多个传感器的骨臼传感器插入物的局部 剖面图;

图41为根据本发明的具有传感器植入系统的两个脊柱节段的局部剖 面侧视图;以及

图42为具有植入穿过椎弓根的传感器的椎节的局部轴向剖面图。

具体实施方式

本发明的多个方面在下面的说明中公开并且涉及针对本发明的具体 实施例的附图。可以设计出不脱离本发明的精神或范围的替代实施例。此 外,本发明的示例性实施例的公知元件将不被详细描述或将被省略,以免 导致本发明的相应细节不清楚。

在公开和描述本发明之前,应当理解在此使用的术语仅仅是为了描述 特殊的实施例的目的,而不是为了进行限制。必须注意到,如在说明书和 所附权利要求书中所使用的,单数形式“一”、“一个”和“所述”包括复数含 义,除非上下文中明确指出不包含。

尽管说明书以限定本发明的被认为新颖的特征的权利要求书进行了 总结,然而,可以相信,本发明将通过结合附图对以下说明的考察得到更 好的理解,在附图中,类似的附图标记在下面的附图中继续使用。附图中 的图形未按比例绘示。

根据本发明的外用传感器系统可以用于评估皮肤完整性和病理压力, 病理压力可能导致皮肤局部缺血和最终皮肤衰弱(褥疮)。重要的是检测某 些可能导致皮肤衰弱的参数。诸如压力、时间、切变和脉管流量之类的要 素例如为检测的重点。需要具体的解剖位置。

本发明的传感器系统可以埋入到薄的、具有粘性的、相容材料中,所 述材料被应用至具体关注区域中。示例性区域包括跟骨、髋部、骶骨以及 其它风险区域。这些传感器制定解剖区域。如果超过极限参数,则传感器 通知遥测接收器,从而向护士或其它卫生保健专业人员启动报警。在一个 具体应用中,这种信息用于控制患者躺靠的床,以释放关注区域。特别是, 调节床垫中的气嚢,这可以卸载受伤的关注区域。

外部传感器系统可以以多种方式构造。在示例性实施例中,传感器设 置在薄的、可相容粘合剂中,所述粘合剂直接涂敷到患者的身体上,并且 通过薄锂电池供电。这种传感器提供特殊参数例如压力、时间、剪切力和 血管流动。这种传感器遥测地通知接收单元,并且如果超过某些既定程序 参数,则设置报警。在一个实施例中,提供视觉辅助工具(例如显示患者 的身体外形的计算机屏幕),则精确的关注区域可以更加显著,并且从而 使得卫生保健专业人员可视。

埋入的传感器需要检测不能直接由人眼观察到的某些内部参数。这些 传感器将被用在特定的部位以检测特定的参数。

埋入传感器的一种方式是通过切开外科手术程序,在这种外科程序 中,传感器通过外科医生直接埋入到骨头或软组织中,或者直接附连至固 定的植入物(例如,假体(髋部、膝盖))上。在外科手术程序中使用传感 器系统以通知外科医生植入物以及软组织平衡和/或对准的位置和/或功 能。传感器直接埋入有穿透工具,以将传感器释放在预定的深度。传感器 通过特殊锁止系统或粘合剂附连至固定的植入物。传感器在闭合之前启 动,以使传感器生效。

埋入传感器的另一种方式是通过经皮程序。将传感器植入特定位置中 的能力对评估内部系统非常重要。可以可将变直径传感器植入到骨头、软 组织和/或植入物中。这个程序在例如由荧光透视法、超声波成像和CAT 扫描提供的可视的情况下应用。这种程序可以在局部或区域麻醉情况下执 行。这些评估的参数如在此所描述的。经皮系统包括具有尖锐的套管针的 薄型工具,其刺入必要的组织平面,并且通过布置臂将传感器释放在预定 的深度处。这种工具也可以容纳必要的导航系统来确定所需具体解剖位 置。

待评估的参数和时间因素确定埋入传感器所需的能量源。短期限(不 超过5年)允许使用电池。长期限需要建议使用外部有源系统或外部动力 系统,或者使用患者的动能以向传感器系统提供能量。这些有源系统目前 可以被使用。传感器也可以在预定的时间启动,以监控植入物循环、异常 移动和植入物磨损阈值。

信息被遥测接收。在一个示例性实施例中,如果超过特定阈值,则传 感器被预编程为“启动”,并且发送所需的信息。传感器也能够被启动和使 用以将信息再传播至外部接收器。进一步的应用允许将“智能植入物”重新 调节以释放特定药物、生物或其它物质,或者重新调节植入物对准或模块 化。

传感器系统初始被启动并且在医生的办公室中被读取,并且可以在患 者的房间内进一步启动,并且患者具有通过互联网应用例如向医生发送信 息的能力。

软件将被编程为接收信息、处理信息、并且随后将信息传播至卫生保 健提供者。

本发明的传感器系统具有许多不同的应用。例如,可以用于治疗骨质 疏松症。骨质疏松症为骨头的病理状况,其特征在于减少骨量从而增加骨 折的风险。公认的是,骨矿含量和骨矿密度与骨强度相关。

骨密度是待评估的肌肉骨骼系统的非常重要的参数。骨密度测量用于 量化人骨头强度并且最终预示与骨质疏松相关的增加的风险。骨质丟失导 致骨折、脊柱压缩、和植入物松动。目前,医生采用诸如专用X射线之类 的外部方法。

用于骨密度测定法的测量单位为以克表示的骨矿含量。在骨折疏松 症、骨愈合、以及由应力防护的植入物松动的评估中,骨密度变化是非常 重要的。另一重要的评估涉及骨质溶解。骨质溶解可以以默示的方式破坏 骨头。这是受植入者对诸如聚乙烯之类的支承配件的病理反应。聚乙烯粒 子激活免疫肉芽瘤响应,其起初影响植入物周围的骨头。在内嚢变化之前 将产生骨密度改变,这导致严重的骨质丟失和植入物失效。

存在可以评估骨密度的多种外部系统。这些系统所遇到的问题与各种 系统本身相关,然而也与将患者带入办公室以评估无痛疾病的社会经济约 束相关,以及加上收紧的付款方式导致评估之间的间隔加长。

根据本发明使用的传感器允许评估骨密度方面的变化,从而能够使卫 生保健提供者获得实时的内部数据。应用传感器可以评定骨质溶解及其等 级和/或响应处理。通过评估骨密度的变化,传感器早期提供涉及骨折愈合 的信息和早期提供涉及骨质溶解的变化(涉及植入物中聚乙烯磨损的骨头 变化)。

然而,具有多种不同形式的装置在穿过骨头和软组织时,均记录一束 能量的衰减。结果的比较必须限于相同形状的骨头,其假定骨头厚度和被 扫描的区域之间恒定的关系。此外,测量为精确的骨架位置确定,由此, 只有在研究骨架中的相同位置时,才可以进行个体的比较。

双能X射线吸收测量法可以用于在多个解剖位置检测骨矿含量的少 量变化。技术的主要缺点在于其不能使检查者区分皮质的骨和有小梁的 骨。定量的超声波与仅仅测量骨矿含量的其它骨密度测量方法相比,可以 测量诸如机械完整性之类的额外的骨头的特性。超声波的通过骨头的传播 受到骨量、骨头结构和加载方向性的影响。作为用于评定骨头的强度和硬 度的测量的定量的超声波测量基于所接收的超声波信号的处理。一定速度 的声音和超声波传播穿过骨头和软组织。假体松动或下沉,和股骨/胫骨/ 髋臼或假体的骨折与骨质丟失相关。因此,假体周围的骨矿含量的渐进的 可计量变化的精确评定可以帮助正在治疗的外科医生确定何时插入,以保 持修正关节形成术的骨发育(bone stock)。这种信息帮助用于骨质疏松的 骨头的植入物的发展,并且有助于骨质疏松症的医疗以及不同植入物涂层 的效果的评估。

本发明的传感器系统可以用于评估内部植入物的功能。实际植入物功 能的当前经验是非常少的。医生连续地使用外部方法,包括X射线、骨扫 描和患者评估。然而,医生典型地仅仅保留通过切开外科手术探察来进行 实际功能调查。利用根据本发明的传感器容许植入物的早期故障以及即将 发生大的故障的检测。这样,可以进行早期介入。从而降低患者的发病率; 降低进一步的医疗保健成本;以及提高患者的生活质量。

传感器可以直接附连至植入物的表面(预先实施和/或在内实施)和/ 或直接附连至植入骨头的内表面。传感器可以被植入到骨头和软组织中。 在这种应用中,医生能够评估植入受植入者系统的重要参数。可以测量的 示例性参数包括:植入物稳定性、植入物移动、植入物磨损、植入物循环 时间、植入物识别、植入物压力/加载、植入物一体性、关节液分析、关节 表面信息、韧带功能、以及其它更多。

根据本发明的传感器的应用允许人们确定植入物是否不稳定和/或是 否发生过度移动或下沉。在示例性应用中,传感器可以构造为从有源的植 入的模块中释放正常生物制剂(orthobiologic),以增加一体性。可选的是 和/或此外,具有传感器的植入系统可以用于调节角/偏移/软组织应变,以 在必要时稳定植入物。

传感器可以用于检测植入物支承件是否磨损坏。可检测的支承件参数 包括早期磨损、增加的摩擦等。来自传感器的警告的早期报警能够先于大 的故障早期更换支承件。

关节植入物传感器可以检测热量、酸度、或其它物理特性的增加。这 种认识将向医生提供早期感染警告。在示例性感染治疗应用中,传感器可 以启动释放抗生素的埋入模块。

传感器可以用于分析膝外科手术。这种传感器可以随后被设置在膝部 中,以评估脉管流量、压力、和/或节律。内部脉管监控器可以为植入物的 一部分,并且包括释放抗高血压药物或抗心律不齐药物(anti-arrthymic) 模块的设备,以在需要时修改脉管的变化。

在一个实施例中,内部矫形植入物本身为本发明的传感器。在外伤状 态下,例如,螺旋还原反应器可以被用作植入物和传感器。这种螺旋反应 器可以在骨折位置处检测异常移动并且确定密度的增加(即,愈合)。这 种应用允许成骨形态形成蛋白(BMP)的经皮植入,以有助于愈合或硬件的 经皮调节。

本发明的传感器可以用于脊骨植入。位于脊骨/椎骨中的传感器可以检 测在并合位置处的异常移动。传感器评估相邻椎骨节段处的脊骨植入一体 性和/或检测相邻椎骨节段的不稳定性。植入的传感器可以启动过渡稳定系 统或植入物,并且确定过度移动的区域,以能够通过硬件或正常生物制剂 获得经皮稳定性。现将详细参考附图中的图示,首先,特别参考附图中的 图1,其中示出了脊柱的一部分的并合的局部侧视图。上椎骨10通过椎间 盘30与下椎骨20分开。骨移植片40首先由下关节面50覆盖,并且随后 由上关节面60覆盖。图2为图1的脊柱部分的前后视图,其中骨移植片 40示出在椎间盘30的任一侧,并且具有相对的横突70。根据本发明的传 感器1可以检测并传递关于移动和椎骨10、20的载荷的信息,并且被植 入各种脊柱要素中。所述要素可以包括脊柱椎弓根80、横突70、关节面 等。

图1和图2绘示了本发明的传感器1如何可以用于无测量仪表的并合 的脊柱中。传感器1在外科手术之后的周期内以可变的次数启动。例如, 围绕并合“块”的异常移动或过度移动有助于检测未结合。

图3绘示了本发明的传感器1如何可以用于有测量仪表的脊柱的并 合。更特别的,传感器1并入“骨架”检测仪表130,所述检测仪表130位 于下椎骨板110和上椎骨板120之间。这种传感器1检测移动和载荷,并 且在外科手术之后的周期内启动以传递信息,从而帮助确定并合块是否坚 固。

图4绘示了本发明的传感器如何可以用于椎弓根螺钉130中。更特别 的是,传感器1并入椎弓根螺钉130中以帮助检测在并合块中椎骨之间的 任何异常移动。

图5绘示了本发明的传感器1如何可以用在无椎骨椎间盘植入物(置 换品)中。更特别的是,例如,人造椎间盘置换品140具有设置在金属- 骨头界面上的传感器1。这些传感器1检测载荷和移动,以在外科手术期 间帮助置换椎间盘140,并且在外科手术之后,确定椎间盘-骨头界面的稳 定的一体性。内部传感器2检测关节间盘内界面之间的“正常”移动,以在 外科手术之后帮助确定椎间盘置换品运行,并且最优化可变载荷和脊柱移 动的级别。

图6绘示了传感器布置装置150,其被绘示为具有手柄151和柱塞152。 手柄151和柱塞152允许为套管针153的一部分A的传感器3的插入。套 管针153可以刺入皮质,并且传感器3可以被布置。图7绘示了传感器3 在股骨中的插入,并且图8绘示了传感器3在椎骨中的插入。随后,传感 器3可以例如通过旋松螺钉操作或退旋操作与结合结构154分离。这些身 体部位被用作实例是由于它们是与骨质疏松症相关的最常见的受疾病侵 袭部位,以及为与骨质疏松相关的外伤。传感器3的尺寸可以在数毫米至 超过1厘米之间变化。传感器3可以被经皮植入或者以切开的外科手术的 方式植入。

传感器3可以为在髋部和/或脊柱中使用的硬件的一部分。传感器3 可以被设置为各种深度,以允许对皮质和骨小梁进行评估。通过布置两个 传感器3,传感器3之间的距离可以由关注的区域以及可以产生的功率场 确定。能量场可以为诸如超声波、射频和/或电磁场之类的标准能量源。能 量波的随着时间的偏转例如将允许检测待评估的所需参数的变化。

根据图6至图8的示例性外部监控传感器系统能够接触式地每夜读取 骨矿含量和密度。传感器系统也能够以振动模式传递能量波,所述能量波 可以模拟加载于骨头上,并且致使骨矿含量和密度得以改善。传感器还可 以穿过或覆盖植入物来发送能量波以由此帮助骨折的愈合。

髋部的骨折和脊柱椎骨是骨质疏松症和外伤中常见的。图9绘示了将 螺钉4用作内部传感器。骨折部160由加压螺钉4跨越,并且传感器4被 埋入到螺钉4中。螺钉4中的传感器4可以发送能量穿过骨折位置以获得 基准密度读取,并且随着时间监控密度的变化,以确认愈合。传感器4也 可以被外部致动,发送能量波到骨折部,以有助于愈合。传感器4也可以 检测骨折位置处的移动的变化,以及螺钉和骨头之间移动的变化。这种信 息有助于监控愈合,并且给出卫生保健提供者根据指示调节重量负荷的能 力。当骨折愈合时,在图10和图11中示出的在大转子中的传感器4现在 可以启动,以发送能量波至其它两个传感器4。这样将能够连续地评估骨 密度。例如,当患者入睡时,传感器4可以通过传感器床系统启动。能量 源和接收器例如能够附连至床下面。所接收的信息必要时可以在每夜进行 评估,并且由标准电测量器发送至医生。在通过各种药物治疗骨质疏松症 的过程中,在夜晚传感器的启动将能够特定间隔开地读取。

根据本发明通过传感器发送的外部和内部能量波可以用在治疗骨折 和脊柱并合的过程中。

已经研究了超声波、脉冲电磁场、结合磁场、电容耦合、以及直流电 流的使用对生长因子的增性调节的影响。已经示出用脉冲超声波激发“整 联蛋白”(其是细胞表面上的受体),当激发时,产生细胞内信号通路。现将 描述涉及炎症、血管生成和骨头愈合的蛋白质。这些蛋白质包括成骨形态 形成蛋白(BMP)-7,碱性磷酸酶、脉管内皮生长因子和胰岛素生长因子(IGF) -1。脉冲电磁场的使用显示出增加动物骨头的愈合次数。各种波形以不同 的方式影响骨头。

利用定量的超声波的传感器系统可以用于外部评估跟骨密度。根据本 发明的系统附连至患者的床上,并且通过使用如图10和图11中示出的形 式的外部超声波,可以评估骨密度。已经显示出使用能量场能够刺激骨头 愈合进程。可以通过外部测量来影响刺激,然而使用内部传感器系统可以 改变波形,并产生可以有效地“加载”骨头的振动信号。通过多种矫形法则 可知这种影响能够增强骨头皮质以及有效地用在骨折和骨质疏松症的治 疗中,如在图10中所示。在图10中的传感器位于皮质或导管中。能量波 形彼此发送。能量波形可以被外部系统激发和接收,或者为传感器本身的 一部分。类似地,图11绘示了椎骨节段,在椎骨节段中传感器4彼此发 送能量波形,并且发送至外部接收器。这种系统/治疗可以用于处理骨折和 骨质疏松症。

根据本发明的传感器系统主要绘示了髋部和脊柱,然而本发明可以用 于身体的所有骨骼部位。图12至图18绘示了根据本发明的传感器的各种 取向,以治疗膝部、髋部和椎骨。

图19和图20绘示了手柄170的一个示例性实施例,手柄170可拆卸 地连接至可植入传感器本体5。在本实施例中,手柄具有外螺纹,其旋拧 入本体5的相应的内螺纹孔中。

根据本发明的传感器用在多种矫形应用中,包括在外科手术中关节植 入物对准。可以使用的传感器和监控设备/系统包括任何在现有技术中公知 的、例如在Nexense专利中描述的传感器和设备/系统。计算机辅助外科手 术也是常见的。

目前,在股骨和胫骨中使用销以允许销阵列附连至骨头。这种附连有 助于在手术的过程中膝部/髋部关节的空间取向。这些阵列由红外光学识别 或由电磁设备识别(参见图21和图22),以将信息重新输入认可的软件系 统中,这样允许外科医生以三维的方式观察到关节,同时将选择的植入物 覆盖在骨头上。通过应用这种销将产生许多问题:

需要在外科手术部位外侧刺入骨头;在销位置产生外科手术后疼痛和 引流;

在外科手术的过程中可能出现销松动,同时模块化阵列和红外光;

所述销要求外科医生在手术过程中改变当前定位,这是比较困难的; 以及

在外科手术中使用的各种金属和工具可能会影响电磁场。

插入销、锁止阵列、记录关节局部解剖所需的时间显著地延长了手术 过程。并且仍然需要独立地触动股骨和胫骨上的多个点以允许计算机使得 能够观察到膝部的局部解剖。用于将信息从传感器传递至接收器的时间也 导致潜在的延迟。因此,期望能够减小或消除这些问题中的每一个。

根据本发明的方法包括将传感器植入到外科手术部位中,在外科手术 过程中利用所述传感器,并且在外科手术之后利用所植入的传感器来评估 各种所需参数。

图23示出了在股骨和胫骨中埋入的传感器6,并且图24示出了髌骨 中的传感器6。所示出的韧带包括内侧副韧带、外側副韧带、前十字韧带、 以及后十字韧带。传感器6通过切开外科手术先于经皮手术和/或关节镜下 手术被植入或在外科手术操作中植入。图25绘示了韧带或腱;图26绘示 了具有加压和释放手柄的传感器夹具;图27绘示了传感器的布置;以及 图28显示了在韧带中布置的传感器。如在图25至图28绘示的步骤中所 示,传感器通过提供传感器夹具(图26)可以埋入到韧带(图25示出了 示例性的韧带)中,其中所述传感器夹具设置在韧带周围(图27),并且将 传感器固定在韧带上,如图28中所示。传感器也可以被埋入到骨头中, 如随后在图33中所示。标准射线照相技术能够用于引导布置角度和深度。

超声波套管系统180允许传感器置放的外部非辐射性可视,如图29 中所示。套管181容纳发射器182和接收器183。随后,布置传感器184 优选地设置以用于插入。随后,超声波臂能够用于获得关节表面和深度的 快速局部解剖。超声波插入物将能量波发送至多个埋入的多个传感器7中, 所述传感器7彼此反射,并且返回至超声波换能器,如图17中所示。图 17绘示了超声波传感器7,其利用声波的反射技术。声波反射出骨头的端 部和埋入的传感器7,返回至超声波插入物中的接收器。接收器检测反射 的声波并启动传感器输出至计算机屏幕以可视化,如图18中所示。

超声波还向胫骨发出穿透射束。在此,发射器将超声波播送至分离的 接收器190。股骨/胫骨偏转触发接收器输出的射束。埋入传感器7的连续 地将超声波射束反射至传感器7的网络的附加能力允许精确的三维信息。 传感器7被编程为补偿不规则的表面和可变表面温度。骨头的测量基于所 接收的超声波信号的处理。声音速度和超声波速度均基于超声波传播通过 骨头和软组织的速度快慢提供测量。这些测量特征容许快速的三维几何图 形的形成,其信息可以从外部发送至计算机系统,这将允许假体的一体化, 如图18中所示。

为了使得传感器系统获得与关节的空间三维局部解剖相关的所需信 息,最小的三个传感器需要被植入到为关节的一体的部分的各块骨头中。 可以通过具有一个或多个传感器(图31)的单个套管(图30)布置传感 器,或者通过多个传感器布置套管布置传感器(图32)。传感器将具有带 刻度的套管针,套管针将刺入皮肤、肌肉、韧带、腱、软骨和骨头。图33 绘示了在开膝外科手术中传感器的布置,其中去除了软组织,并且软骨和 骨头已经被切割。手柄190容纳控制传感器布置的深度的柱塞191。参见 图34至图37。最小深度由待切割以植入假体和植入物的软骨和骨头的数 量确定。例如,在骨骼和胫骨中,最小切割10毫米至15毫米。传感器被 布置的深度与切割相对应,这样在外科手术过程中不会移动,并且能够用 在外科手术之后的周期中。套管针针尖将容纳传感器的要件(图34),并 且在到达布置的所需深度时,传感器8通过释放锁止机构(图19)而被插 入,锁止机构可以为螺钉、或者旋转-解锁连接器、断裂构件、或任何其它 解除结合机构。

当传感器系统被插入时,将使用的外部能量波可以为超声波或电磁 波。从而可以避免使用光学阵列方法。能量通过各种介质(软骨和骨头) 和能量波的时间要素的偏转通过传感器8接收和/或反射回到外部接收器。 通过具有多种传感器8,示出了三维模型。这样使得外科医生能够包埋传 感器(图33),在外科手术期间使用传感器(图18、图22),以及在外科 手术之后使传感器被植入以进行利用(图12和图13)。相应地,信息传播 的速度将极大地增加和被处理。

图23和图24绘示了膝关节软组织的一些要素。在外科手术的过程中, ACL、PCL、内侧副韧带、以及外侧副韧带对膝关节的平衡非常重要。传 感器通过夹具机构(参见图25至图28)埋入到腱的韧带中。信息通过软 件系统接收和处理,所述软件系统并入计算机辅助关节外科手术设备中, 并且表示外科手术过程中关节的视觉模拟(图22)。评估韧带张力、压力、 切变等。软组织配平格栅(balancing grid)有助于外科医生实现相关的软 组织释放和部件旋转。

图38绘示了髋部中的类似的传感器系统。插入物类似于在图38中示 出的单个传感器插入物,或者可以修改为如图38中所示。插入物构造为 套管插入的髋臼钻孔器,其用在标准的髋部外科手术中。手柄200使构造 稳定,并且传感器8通过压下手柄200中的柱塞进行布置。图40绘示了 臼杯传感器插入物。套管插入的孔允许传感器9的布置。所述构造可以修 改为类似于图29的构造,以包括超声波部件,从而有助于使解剖可视。

图34至图37绘示了“智能”插入物和“智能”工具的发展。插入物/工具 的手柄210容纳一阵列的传感器8,以帮助精确地切割骨头(图36)以及 假支体和传感器的插入(图35和图37)。这些传感器8由超声波/电磁波 换能器和接收器空间识别,以允许确认植入物/骨头界面进行了适当的准 备,以及确认植入物以适当的深度和角度插入。随后能够进行胶结部件或 压配合部件的稳定性的测试。在外科手术时或者在外科手术之前植入在假 体上的传感器还允许假体的精确插入和取向。在外科手术之后,还执行植 入评估。

图39绘示了传感器8插入到股骨中。传感器8可以从内向外布置、 从外向内布置,或者并入到假体的远端定心器和/或导管限制器。

图41绘示了两个脊骨节段的侧视图。传感器插入物示出为以经皮的 方式将传感器布置入椎骨体中。图42绘示了一个椎序的轴向视图。传感 器9被植入穿过准备检测的椎弓根。

跟随假体插入的植入的传感器系统在图12中绘示,图12为假体的前 视图,并且示出了膝关节、股骨和胫骨假体、聚乙烯植入物、以及埋入的 传感器。图13绘示了具有植入有传感器系统的假体的膝关节的侧视图。 图14绘示了具有埋入的传感器系统整个髋部假体。图15绘示了在椎骨的 两个节段和植入物中埋入的传感器的侧视图。图16通过假体/植入物的上 部(轴向)视图绘示了在椎骨体中的传感器系统。

本发明的传感器系统可以用在外科手术之前,以跟踪关节病理的进展 以及不同的治疗干涉。所述系统可以用在外科手术中以帮助假体/检测仪表 /硬件的植入。在脊柱中,可以评估对神经元的影响,以及在外科手术(尤 其是矫正外科手术)中脉管的变化。随后,这些传感器可以被用在外科手 术之后,以评估随着时间的变化和动力学变化而发生的变化。传感器在外 科手术中被启动,并且存储参数的读数。紧接着外科手术之后,传感器被 启动并且获知基线。

传感器系统允许对受植入者的骨头和相关组织进行评估,然而不限于 骨密度、血流粘度、温度、应变、压力、角畸变、振动、脉管/静脉/淋巴 管流量、载荷、扭矩、距离、倾斜、形状、弹性、移动以及其它。由于传 感器跨越关节空间,因此可以检测植入物功能的变化。植入物功能的实例 包括承受磨损、下沉、骨头一体化、常规和异常移动、热度、粘度的变化、 颗粒物质、运动学特性等等。

传感器可以通过内部电池或者外部措施供电。患者可以在夜晚通过非 接触式致动系统在床上进行评估,所述非接触式致动系统可以使用射频或 电磁/超声波能量。传感器系统的能量信号能够穿透床,启动传感器,并且 传递至同样可以附连至床上的接收器。传感器可以随着时间“加固”(例如, 通过适当的软件增进),以评估各种参数。传感器可以通过外部设备进行 修改,诸如闪存设备。例如,一组埋入的传感器可以监控被检测的脊柱并 合的进展。当给出的参数被确定时,相同的传感器可以被重新编程,以监 控相邻的脊柱节段,以预报增加的应力,以及最终相邻椎序的半脱位。

传感器系统的另一特征为在评估期间,传感器系统可以通过一系列传 感器参数循环。这种循环的实例可以在患者睡觉时评估骨密度,并且此后, 评估脉管结合流粘度、以及支承表面。这种评估可以在具有特定时间间隔 或根据需要随机的固定时序发生。信息可以通过目前的电话设备遥测地发 送至卫生保健提供者。类似地,患者可以通过外部传感器致动器在医生的 办公室中进行评估。随后,患者可以通过允许医生评估植入物功能(包括 诸如载荷、力矩、移动、稳定性等的参数)的一系列动作被仔细检查。

软件系统容纳允许间隔对比的格栅中的传感器信息。随后,医生评估 数据和功能,其中落入标准偏差外的被突出显示,这些参数被进一步评估。

尽管这些传感器系统在此主要讨论为与膝部、髋部、和脊柱相关,然 而这些系统可以用于身体中的任何骨骼系统。

所述系统的使用已经在用于肌肉骨骼传感器系统的本发明的说明书 中进行了解释。然而,应当注意,本发明并不限于此。根据本发明的设备 和方法可以根据任何需要来使用。

前述的说明书和附图示出了本发明的原理、优选实施例和操作模式。 然而,本发明不应被理解为限于上述的特定实施例。本领域的技术人员应 会理解上述实施例的其它改型。

因此,上述实施例应当被认作是示例性的而不是限制性的。相应地, 应当理解这些实施例的改型可以由本领域的技术人员实施,而不脱离如随 后的权利要求书限定的本发明的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号