首页> 中国专利> 基于PIV技术的人体上呼吸道流场测量方法及实验装置

基于PIV技术的人体上呼吸道流场测量方法及实验装置

摘要

本发明公开了一种基于PIV技术的人体上呼吸道流场测量方法及实验装置。本发明以真实人体上呼吸道模型为研究对象,利用真空泵的抽吸作用使气体在模型内形成通路,模拟人体肺的呼吸过程。在流场内散播示踪粒子,用激光器产生的片光源照射人体上呼吸道模型流场,并利用跨帧CCD相机以垂直片光源方向对准待测区域,根据示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像并传送到计算机内进行计算和分析,采用自相关或互相关算法求得人体上呼吸道模型流场内流体的速度,同时获得吸气时人体上呼吸道流场气流涡结构特征及其演化形式和剪应力的变化及分布形式。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-11-19

    授权

    授权

  • 2012-09-12

    实质审查的生效 IPC(主分类):G01M10/00 申请日:20111215

    实质审查的生效

  • 2012-07-11

    公开

    公开

说明书

技术领域

本发明涉及生物医学工程、卫生防护防疫技术与装备、人-机-环境系统工程 和流体力学等技术领域,具体地说,是涉及适合人体上呼吸道气流流场测量的 一种测量方法和实验装置。

背景技术

PIV技术作为研究各种复杂流场的一种基本手段已广泛应用于各种流动测 量与显示,国内外已经有很多学者将这一测量技术应用于通风领域的研究。从 定常到非定常、低速到高速、单相到多相,在同一时刻记录整个测量平面的有 关信息,从而获得流动的瞬时速度场、脉动速度场、涡量场和雷诺应力分布等, 很适合研究涡流、湍流等复杂流动结构的流场测量,可以实现对流体域进行全 场、瞬态、无干扰测量。

人体呼吸系统的主要生理机能是在大气和血液之间交换氧气和二氧化碳, 维持体内各级组织进行新陈代谢所需要的气体环境。人体上呼吸道是呼吸系统 的重要组成部分,是人体与外界环境进行气体交换的主要通道。随着国际生物 恐怖威胁的增加、大气环境的不断恶化以及卫生防护防疫技术的发展,对人体 上呼吸道内气流运动研究的重要性已逐渐为人们所关注。国内外已有研究人员 对人体上呼吸道流场进行了相关研究,并取得了一定成果。但是目前研究仍有 局限:一是采用计算机仿真研究较多而实验研究较少;二是实验研究多数局限 在单一口喉模型、鼻腔模型或支气管模型,缺乏对包括口腔到前三级支气管在 内的完整人体上呼吸道模型的研究;三是所用模型大都为简化模型,概况起来 主要体现在以下五个方面:1)均假设刚性壁面,没有考虑壁面弹性的影响;2) 人体上呼吸道内的真实呼吸流是典型的流体-结构交互作用影响的过程,而进行 这一流-固耦合问题的研究较少,缺乏对流-固耦合现象系统深入的认识;3)声 门形状随呼吸流量发生变化,对上呼吸道内的气流运动具有重要的影响,然而 声门形状动态连续随呼吸流量变化对下游气流结构的影响还没有完全弄清楚; 4)现有研究在进行气流运动分析时均假设呼吸道壁面光滑,很少考虑软骨结构; 5)人体肺部的非对称性是肺部模型的重要特点,目前针对这种非对称性影响的 研究仍然较少,其对气流运动的影响尚未达成共识;四是国内外仅限于对整体 气流组织形式的研究。

人体上呼吸道气流运动为等温、不可压缩流动,多数情况下是层流或者低 雷诺数的湍流流动。同时,涡结构特征及其演化形式是上呼吸道气流运动现象 的显著特点,呼吸气流运动受呼吸模式、呼吸道结构特点、壁面粘液等多因素 的影响,经历由层流向湍流过渡以及由大尺度涡结构向小尺度涡结构过渡的湍 流转捩过程,在湍流转捩过程中形成涡结构、流动分离、二次流等较为复杂的 气流运动形式,其内部流场极为复杂。

正是在这一背景下,通过建立包括从口腔到前三级支气管在内的真实人体 上呼吸道模型,构想一种基于PIV技术的人体上呼吸道流场测量方法并研制实 验装置。

发明内容

本发明所要解决的技术问题是,克服现有技术中存在的不足,通过建立真 实的人体上呼吸道模型,配备真空泵、电磁阀、流量计、真空舱室、烟雾混合 舱室等设备和器材,以及由激光器、CCD照相机、烟雾发生器和电脑等组成的 PIV测试系统,提供一种能够测量稳态和瞬态两种情况下人体上呼吸道流场气流 运动特性、涡结构特征及演化形式、剪应力变化及分布的测量方法及实验装置。

本发明人体上呼吸道流场测量实验装置,通过下述技术方案予以实现,所 述实验装置包括真实人体上呼吸道模型、气路系统和PIV测试系统;

所述真实人体上呼吸道模型包括口腔、悬雍垂、咽部、会厌、喉部、声门、 梨状窝、气管和前三级支气管;所述模型口腔进口简化为圆形,口腔腔体为拱 形,口腔的进口沿水平方向;所述模型悬雍垂在口腔上壁靠近咽部前壁处,高 为6.14mm;所述模型咽部形状不规则,矢状位大于冠状位,咽部和口腔底部平 滑连接;所述模型喉部下方有声门开口,会厌在咽的内部突起,会厌与声门通 过管型连接,会厌至少距离咽部底部20mm;所述梨状窝位于喉部底端两侧;所 述模型声门与气管平滑连接;所述模型主气管分别连接两个二级支气管,二级 支气管分别连接长度和数目不同的三级支气管,主气管长134.69mm,各级支气 管长短不一,上述气管平滑连接而成,所述支气管相对于主气管非对称分布;;

所述气路系统包括真空泵、真空舱室、电磁阀、流量计、比例调节阀和烟 雾混合舱室;第一真空气路包括第一真空泵和第一真空舱室,所述第一真空泵 与第一真空舱室之间连接电磁阀四和流量计四,第一真空舱室通过依次设置电 磁阀五、第一比例调节阀和流量计五的管路分别与烟雾混合舱室和真实人体上 呼吸道模型入口连接;第二真空气路包括第二真空泵和第二真空舱室,所述第 二真空泵与第二真空舱室之间连接第二电磁阀和第二通过流量计,所述第二真 空泵与第二真空舱室之间连接电磁阀一和流量计一,第二真空舱室通过依次设 置电磁阀二、第二比例调节阀、流量计二和流量计三的管路分别与三级支气管 末端连接,烟雾混合舱室通过设置电磁阀六、电磁阀七的管路分别与三级支气 管末端连接;

所述PIV测试系统由脉冲激光器、跨帧CCD相机、同步控制器、烟雾发生 器、示踪粒子和电脑组成;所述脉冲激光器置于真实人体上呼吸道模型同侧; 所述跨帧CCD相机正对真实人体上呼吸道模型垂直置于脉冲激光器产生的片光 源方向;所述同步控制器连接脉冲激光器、跨帧CCD相机和电脑;所述示踪粒 子置于气溶胶发生器内,气溶胶发生器输出端置于烟雾混合舱室内。

所述模型咽部为矢状位大于冠状位的不规则形状。所述模型左侧一级支气 管长度大于右侧一级支气管,所述模型左右两侧靠下的二级支气管长度分别大 于同侧靠上的二级支气管长度,所述三级支气管的支气管长短不同。所述模型 右侧靠上的二级支气管连接三个三级支气管,其他二级支气管各连接两个长度 不同的三级支气管。

本发明基于PIV技术的人体上呼吸道流场测量实验装置的实验方法,通过 对不同呼吸模式、呼吸频率的测量,分别得到稳态呼吸模式和循环呼吸模式下 人体上呼吸道流场气流运动特性、涡结构特征及演化形式、剪应力变化及分布 形式。

本发明通过集成真实人体上呼吸道模型、气路控制系统及PI V测试系统, 能够更加精确地测定人体上呼吸道流场气流运动特性并能人体上呼吸道内的气 流涡结构特征及其演化形式和剪应力的变化及分布形式。

附图说明

图1是本发明整体结构示意图;

图2是本发明真实人体上呼吸道模型示意图;

图3是本发明气路系统示意图;

图4是本发明PIV测量系统示意图;

图5是本发明模拟吸气阶段示意图;

图6是本发明模拟呼气阶段示意图。

具体实施方式

下面结合附图对本发明做进一步说明。

如图1所示,本发明硬件系统包括真实人体上呼吸道模型、气路系统和PIV 测试系统三大部分。

图2所示为真实人体上呼吸道模型,模型包括口腔41、悬雍垂、咽部42、 会厌、喉部、声门、梨状窝43、气管44和前三级支气管;所述模型口腔进口简 化为圆形,口腔腔体为拱形,口腔的进口沿水平方向,舌后区高度为33.55mm; 所述模型悬雍垂在口腔上壁靠近咽部前壁处,高为6.14mm;所述模型咽部形状 不规则,矢状位大于冠状位,咽部和口腔底部平滑连接;所述模型喉部下方有 声门开口,会厌在咽的内部突起,会厌与声门通过管型连接,会厌后区高度 41.92mm;所述模型梨状窝位于喉部底端两侧;所述模型声门与气管平滑连接; 所述模型主气管44分别连接两个二级支气管45,二级支气管分别连接长度和数 目不同的三级支气管45,主气管长134.69mm,各级支气管长短不一,上述气管 平滑连接而成,所述支气管相对于主气管非对称分布;所述模型基于正常人体 上呼吸道CT扫描图像,运用高级图像处理技术对人体上呼吸道模型进行规范化 处理并进行三维重建,将重建后的真实人体上呼吸道模型数据输入到SPS600快 速成形机,采用激光快速成型技术,制作透明的树脂真实人体上呼吸道模型。

如图3所示,所述气路系统包括第一真空泵25、第二真空泵2、第一真空 舱室28、第二真空舱室5、电磁阀一3、电磁阀二6、电磁阀三16、电磁阀四 26、电磁阀五29、电磁阀六32、电磁阀七39、流量计一4、流量计二8、流量 计三15、流量计四27、流量计五31、第一比例调节阀30、第二比例调节阀7 以及烟雾混合舱室17;第一真空气路包括第一真空泵和第一真空舱室,所述第 一真空泵与第一真空舱室之间连接电磁阀四26和流量计四27,第一真空舱室通 过依次设置电磁阀五29、第一比例调节阀30和流量计五的管路分别与烟雾混合 舱室和真实人体上呼吸道模型入口连接,与烟雾混合舱室连接的管路设置电磁 阀三16;第二真空气路包括第二真空泵和第二真空舱室,所述第二真空泵与第 二真空舱室之间连接电磁阀一3和流量计一4,第二真空舱室通过依次设置电磁 阀二6、第二比例调节阀7、流量计二8和流量计三15的管路分别与三级支气 管末端连接,烟雾混合舱室通过设置电磁阀六32、电磁阀七39的管路分别与三 级支气管末端连接。各器件通过软管连接,连接处加装宝塔接头和喉箍,保证 整个气路具有良好的密封性;所述真空泵用来提供气源,使真空舱室形成相对 真空状态;所述真空舱室5用来模仿人体肺部;所述电磁阀为常闭型控制气路 开关;所述流量计用以观测流量;所述比例调节阀用以实现人体循环呼吸的流 量控制;所述烟雾混合舱室用以存储示踪粒子并起缓冲作用。

如附图4所示,所述PIV测试系统包括脉冲激光器19、跨帧CCD相机21、 同步控制器23、烟雾发生器18、示踪粒子24和计算机22,所述脉冲激光器置 于真实人体上呼吸道模型同侧;所述跨帧CCD相机正对真实人体上呼吸道模型 垂直置于脉冲激光器产生的片光源20方向;所述同步控制器连接脉冲激光器、 跨帧CCD相机和电脑;所述示踪粒子置于气溶胶发生器内,气溶胶发生器输出 端置于烟雾混合舱室内。

基于PIV技术的人体上呼吸道流场测量实验装置的实验方法,通过对不同 呼吸模式、呼吸频率的测量,分别得到稳态呼吸模式和循环呼吸模式下人体上 呼吸道流场气流运动特性、涡结构特征及演化形式、剪应力变化及分布形式。 具体实现如下详述:

如附图5所示,吸气阶段稳态实验时,电磁阀一3通电,开启第二真空泵2, 通过流量计一4来观察第二真空舱室5被抽出的气体,待第二真空舱室5形成 相对真空后,令电磁阀一3断电同时关闭第二真空泵2;然后令电磁阀三16和 电磁阀二6通电,令第二比例调节阀7保持恒定开度,通过流量计二8、流量计 三15观察从人体上呼吸道模型入口处进入到模型内气体的流量,打开激光器19 并调整激光能量,形成片光源20来照射人体上呼吸道模型1,利用同步控制器 23跨控制帧CCD相机21以垂直片光源方向对准待测区域,用示踪粒子24对光 的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成整个待测区域的两 幅PIV底片(即一对相同待测区域、不同时刻的图片),并将所拍摄的图像传入 计算机22中;采用图像处理技术将所得图像分成许多很小的区域(称为查问区), 使用自相关或互相关统计技术求取查问区内粒子位移的大小和方向,脉冲间隔 时间已设定,粒子的速度矢量即可求出;对查问区中所有粒子的数据进行统计 平均可得该查问区的速度矢量,对所有查问区进行上述判定和统计可得出整个 速度矢量场;所述PIV测试原理用公式表示为:

vx=x(t+Δt)-x(t)Δt=vx,

vy=y(t+Δt)-y(t)Δt=vy,

式中,vx、vy为水质点沿x、y方向的瞬时速度,为水质点沿x、y 方向的平均速度,Δt为测量的时间间隔;利用计算机22中的Insight软件即可 同时获得吸气时人体上呼吸道流场气流涡结构特征及其演化形式和剪应力的变 化及分布形式。

如图6所示,呼气阶段稳态实验时,电磁阀四26通电,开启第一真空泵25, 通过流量计四27来观察第二真空舱室28被抽出的气体,待第二真空舱室28形 成相对真空后,令电磁阀四26断电同时关闭第一真空泵25;然后令电磁阀五 29和电磁阀六32、电磁阀七39通电,令第一比例调节阀30保持恒定开度,通 过流量计五31观察从人体上呼吸道模型支气管末端进入到模型内气体的流量, 打开激光器19并调整激光能量,形成片光源20来照射人体上呼吸道模型1,利 用同步控制器23跨控制帧CCD相机21以垂直片光源方向对准待测区域进行拍 摄,下同吸气阶段实验步骤。

瞬态呼吸实验时,根据一般的生理常识,人每分钟的呼吸次数为15次左右, 因此一个呼吸周期约为4秒。我们假定在一个呼吸周期内呼气和吸气的过程分 别为2秒,并假定气流速度是时间的正弦函数。利用第一比例调节阀30和第二 比例调节阀7均按正弦变化来调节整个气路气流形式,因二者均可实现正弦波 的半个周期,而气流方向相反,故呼吸周期可实现完整的正弦波形式。因此, 瞬态呼吸实验重复以上步骤,只要通过调节比例调节阀按正弦变化并控制每次 呼吸的时间即可实现。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号