首页> 中国专利> 氮化物类半导体发光元件、氮化物类半导体激光元件、氮化物类半导体发光二极管及其制造方法和氮化物类半导体层的形成方法

氮化物类半导体发光元件、氮化物类半导体激光元件、氮化物类半导体发光二极管及其制造方法和氮化物类半导体层的形成方法

摘要

本发明提供一种能抑制制造工艺复杂化且能抑制发光效率降低的氮化物类半导体发光元件。该氮化物类半导体发光元件(50)包括:氮化物类半导体元件层(23),形成于基板(21)的由(1-100)面构成的主表面上,具有以(1-100)面为主面的发光层(26);由(000-1)面构成的端面(50a),形成于氮化物类半导体元件层(23)的包含发光层(26)的区域的端部,沿相对于发光层(26)的主面((1-100)面)大致垂直方向延伸;反射面(50c),形成于与由(000-1)面构成的端面(50a)相对的区域,由氮化物类半导体元件层(23)的生长面构成,沿相对于端面(50a)倾斜角度θ1(约62°)的方向延伸。

著录项

  • 公开/公告号CN101809833A

    专利类型发明专利

  • 公开/公告日2010-08-18

    原文格式PDF

  • 申请/专利权人 三洋电机株式会社;

    申请/专利号CN200880108937.3

  • 申请日2008-09-25

  • 分类号H01S5/18(20060101);H01S5/22(20060101);H01S5/323(20060101);

  • 代理机构11322 北京尚诚知识产权代理有限公司;

  • 代理人龙淳

  • 地址 日本大阪

  • 入库时间 2023-12-18 00:44:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-05-03

    专利权的转移 IPC(主分类):H01S5/18 登记生效日:20170414 变更前: 变更后: 申请日:20080925

    专利申请权、专利权的转移

  • 2017-01-11

    专利权的转移 IPC(主分类):H01S5/18 登记生效日:20161221 变更前: 变更后: 申请日:20080925

    专利申请权、专利权的转移

  • 2013-03-27

    专利权的转移 IPC(主分类):H01S5/18 变更前: 变更后: 登记生效日:20130306 申请日:20080925

    专利申请权、专利权的转移

  • 2012-05-30

    授权

    授权

  • 2010-11-24

    实质审查的生效 IPC(主分类):H01S5/18 申请日:20080925

    实质审查的生效

  • 2010-08-18

    公开

    公开

查看全部

说明书

技术领域

本发明涉及氮化物类半导体发光元件、氮化物类半导体激光元件、氮化物类半导体发光二极管及其制造方法和氮化物类半导体层的形成方法

背景技术

目前,Appl.Phys.Lett.48(24),16June 1986,p.1675-1677提出有单片型半导体激光元件,该单片型半导体激光元件具备利用镓砒素系的半导体材料一体地形成有谐振器端面和激光器射出光的反射面的半导体元件层。

在Appl.Phys.Lett.48(24),16June 1986,p.1675-1677所公开的现有半导体激光元件中,对一律层叠(重叠)于基板上的半导体元件层,通过离子束蚀刻技术,形成有光射出面侧的谐振器端面、和在与该谐振器端面隔开规定距离的位置沿相对于谐振器端面倾斜45°的方向延伸的反射面。由此构成为能够将来自谐振器端面的激光器射出光通过反射面反射为与基板垂直的方向而射出到外部。

但是,在Appl.Phys.Lett.48(24),16June 1986,p.1675-1677所提出的单片型半导体激光元件中,在制造工艺上,需要在基板上形成有平整的半导体元件层之后,再利用离子束蚀刻技术形成相对于谐振器端面倾斜为斜角45°的反射面的工序,因此存在制造工艺复杂之类的问题。另外,认为通过离子束蚀刻而形成的反射面表面上形成有微小的凹凸形状,因此从谐振器端面射出的激光的一部分会在反射面上进行散射。在这种情况下,也存在导致作为半导体激光元件的发光效率降低之类的问题。

发明内容

本发明是为解决如上所述的课题而开发的,其目的在于,提供一种能够抑制制造工艺复杂化且能够抑制发光效率降低的氮化物类半导体激光元件及其制造方法。

本发明第一方面的氮化物类半导体发光元件包括:氮化物类半导体元件层,形成于基板上,具有以(H、K、-H-K、0)面为主面的发光层;端面,形成于氮化物类半导体元件层的包含发光层的区域的端部,在相对于发光层的主面大致垂直的方向延伸,由(000-1)面构成;和反射面,形成于与端面相对的区域,由氮化物类半导体元件层的生长面构成,相对于端面倾斜规定角度地延伸。

在本发明第一方面的氮化物类半导体发光元件中,如上所述,包括在与由(000-1)面构成的端面相对的区域相对于端面倾斜规定角度地延伸的由氮化物类半导体元件层的生长面构成的反射面,由此在氮化物类半导体元件层的结晶生长时,能够同时形成相对于端面倾斜的反射面。由此,与在基板上使平整的半导体元件层生长之后再通过离子束蚀刻形成相对于谐振器端面倾斜规定角度的反射面的情况不同,能够抑制半导体发光元件的制造工艺复杂化。另外,通过将反射面按照由氮化物类半导体元件层的生长面构成的方式来构成,能够在反射面上得到良好地平整性。由此,使从端面射出的激光不会在反射面上发生反射就一律使射出方向变化而射出到外部。因此,与通过离子束蚀刻而形成具有微小凹凸形状的反射面的半导体发光元件不同,能够抑制半导体发光元件的发光效率降低。另外,包括在基板上具有以(H、K、-H-K、0)面为主面的发光层的氮化物类半导体元件层,由此能够降低在半导体元件层(发光层)上发生的压电场和自发极化等内部电场。由此,能够进一步提高激光的发光效率。

在上述第一方面的氮化物类半导体发光元件中,优选端面由氮化物类半导体元件层的生长面构成。根据如此构成,在氮化物类半导体元件层的结晶生长时,能够同时形成由(000-1)面构成的端面。由此,在基板上使半导体元件层生长后,与通过离子束蚀刻等而形成相对于基板的主表面大致垂直的谐振器端面的情况不同,能够抑制半导体发光元件的制造工艺复杂化。

在上述第一方面的氮化物类半导体发光元件中,优选由氮化物类半导体构成的反射面具有(1-101)面和(11-22)面中的任一个的面方位,在基板具有由(1-100)面构成的主表面的情况下,反射面为(1-101)面,在基板具有由(11-20)面构成的主表面的情况下,反射面为(11-22)面。根据如此构成,上述两个反射面通过利用结晶生长而由氮原子覆盖大部分表面,因此抑制氛围气中的氧被摄入反射面。由此抑制反射面随着氧化而劣化。其结果是,在激光的反射率上不会发生时效变化,能够得到稳定的激光。

在上述第一方面的氮化物类半导体发光元件中,优选基板具有由(H、K、-H-K、0)面构成的主表面,端面按照在主表面内的[K、-H、-K+H、0]方向条纹状延伸的方式,沿着形成于基板的凹部的一侧面,形成为相对于主表面大致垂直。根据如此构成,在基板的主表面上形成氮化物类半导体层时,利用在基板的(H、K、-H-K、0)面内的与c轴方向([0001]方向)实质上正交的[K、-H、-K+H、0]方向上形成的凹部的一侧面,能够容易地形成具有与基板的主表面大致垂直的由(000-1)面构成的端面的氮化物类半导体元件层。

在这种情况下,优选一侧面由(000-1)面构成。根据如此构成,在基板上形成氮化物类半导体元件层时,接着基板的凹部的(000-1)面,能够容易地形成具有由(000-1)面构成的端面的氮化物类半导体元件层。

在上述第一方面的氮化物类半导体发光元件中,优选构成为:从端面射出的激光通过反射面反射为与来自发光层的射出方向交叉的方向,并入射到激光的监测用的光传感器。根据如此构成,能够将通过作为结晶生长面具有良好平整性的反射面而抑制了光的散射的激光(监测端面射出型激光元件的激光强度的抽样光)导入光传感器,因此能够更正确地测定激光强度。

在上述第一方面的氮化物类半导体发光元件中,优选从端面射出的激光通过反射面反射为与来自发光层的射出方向交叉的方向,作为面发光型激光器的光源而使用。根据如此构成,由于将通过作为结晶生长面具有良好平整性的反射面而抑制了光的散射的激光射出,因此能够形成提高了发光效率的面发光型激光器。

本发明第二方面的氮化物类半导体激光元件包括;基板;氮化物类半导体元件层,形成于基板的主表面上,具有发光层,氮化物类半导体元件层的第一端面包含谐振器端面和形成于谐振器端面附近且至少相对于主表面倾斜规定角度的倾斜面,倾斜面和主表面所成的角为锐角。

在本发明第二方面的氮化物类半导体激光元件中,如上所述,构成为氮化物类半导体元件层的第一端面包含谐振器端面和形成于谐振器端面附近且至少相对于基板的主表面成锐角且倾斜规定角度的倾斜面,由此氮化物类半导体元件层经由比发光层附近的平面积大的平面积与基板侧连接,因此能够使向基板侧散热的路径的截面积增加其平面积增加的部分那么多的量。由此即使是使半导体激光的输出增加的情况,也可将谐振器端面附近的激光器射出光的发热比谐振器端面更适当地经由形成有沿激光的射出方向延伸的倾斜面的氮化物类半导体元件层内部向基板侧扩散。因此,激光器射出光造成的谐振器端面的过度发热得以抑制。由此,能够抑制谐振器端面随着半导体激光器的高输出化而劣化。另外,通过抑制谐振器端面的劣化,能够实现半导体激光器的长寿命化。

在上述第二方面的氮化物类半导体激光元件中,优选氮化物类半导体元件层包含形成于发光层的基板侧的第一导电型的第一包覆层和形成于发光层的与基板相反侧的第二导电型的第二包覆层,倾斜面至少包含第一包覆层的端面。根据如此构成,倾斜面以位于在基板上形成的谐振器端面的发光层的下部附近的第一包覆层为起点向基板延伸而形成,因此能够使发光层附近发生的激光的发热高效地向基板侧扩散。

在上述第二方面的氮化物类半导体激光元件中,优选倾斜面至少形成于从发光层发出的激光的射出侧。根据如此构成,在激光器工作时,能够容易地抑制光射出侧的端面随着更大的发热而劣化。

另外,在本发明中,激光的射出侧通过从一对谐振器端面射出的激光强度的大小关系来区别。即,激光的射出强度相对大的一侧的谐振器端面为光射出侧,激光的射出强度相对小的一侧的谐振器端面为光反射侧。

在上述第二方面的氮化物类半导体激光元件中,优选主表面包含(H、K、-H-K、0)面,至少倾斜面为以按照在主表面内的方向条纹状延伸的方式形成的凹部的一侧面为起点的氮化物类半导体元件层的生长面,在主表面包含(1-100)面的情况下,凹部按照在[11-20]方向条纹状延伸的方式形成,并且生长面由以一侧面为起点的(1-101)面构成,在主表面包含(11-20)面的情况下,凹部按照在[1-100]方向条纹状延伸的方式形成,并且生长面由以一侧面为起点的(11-22)面构成。根据如此构成,能够在与氮化物类半导体元件层的结晶生长同时分别形成由上述(1-101)面和(11-22)面构成的两种由生长面构成的倾斜面。

在上述主表面包含(H、K、-H-K、0)面的构成中,优选还包括第二端面,该第二端面形成于在谐振器延伸的方向上与第一端面相反侧的端部,在相对于主表面大致垂直的方向延伸。根据如此构成,能够形成以第一端面侧的谐振器端面、和与第一端面相反侧的第二端面为一对谐振器面的氮化物类半导体层。

在上述还包括第二端面的构成中,优选第二端面以凹部的另一侧面为起点,与主表面大致垂直地形成。根据如此构成,在基板的主表面上形成氮化物类半导体层时,利用例如在基板的(H、K、-H-K、0)面内的与c轴方向([0001]方向)实质上正交的[K、-H、-K+H、0]方向上形成的凹部的另一侧的侧面,不利用解理工序就能够容易地形成具有与基板的主表面大致垂直的由(000-1)面构成的谐振器端面(第二端面)的氮化物类半导体元件层。

本发明第三方面的氮化物类半导体发光二极管包括:基板,在主表面上形成有凹部;和氮化物类半导体层,在主表面上具有发光层,并且包含以凹部的一内侧面为起点而形成的由(000-1)面构成的第一侧面、和夹着发光层且在与第一侧面相反侧的区域以凹部的另一内侧面为起点而形成的第二侧面。

在本发明第三方面的氮化物类半导体发光二极管中,如上所述,包括:基板,在主表面上形成有凹部;和氮化物类半导体层,包含在主表面上以凹部的一内侧面为起点而形成的由(000-1)面构成的第一侧面、和以凹部的另一内侧面为起点而形成的第二侧面,由此在氮化物类半导体层上形成以事先形成于基板的凹部的内侧面为起点的第一侧面和第二侧面。即,在制造工艺上,与对层叠于无凹部等的平整基板上的氮化物类半导体层通过蚀刻加工而形成如上所述的第一侧面或第二侧面的情况不同,由于不需要蚀刻加工,因此能够抑制氮化物类半导体发光二极管的制造工艺复杂化。另外,氮化物类半导体层的第一侧面和第二侧面通过干式蚀刻等而形成,因此,在制造工艺上,不易在发光层等上产生损伤。由此,能够提高来自发光层的光的输出效率。

另外,氮化物类半导体发光二极管包括:基板,其在主表面上形成有凹部;氮化物类半导体层,其包含在主表面上以凹部的一内侧面为起点而形成的由(000-1)面构成的第一侧面、和以凹部的另一内侧面为起点而形成的第二侧面,由此,在氮化物类半导体层在基板上进行结晶生长时,与生长层的上面(氮化物类半导体层的主表面)生长的生长速度相比,分别形成以凹部的一内侧面为起点的第一侧面和以凹部的另一内侧面为起点的第二侧面的生长速度慢,因此生长层的上面(主表面)边保持平整性边进行生长。由此,与未形成由上述第一侧面和第二侧面构成的端面时的氮化物类半导体层的生长层表面相比,能够进一步提高具有发光层的半导体导层的表面的平整性。

在上述第三方面的氮化物类半导体发光二极管中,优选一内侧面包含(000-1)面。根据如此构成,在基板的主表面上形成具有由(000-1)面构成的第一侧面的氮化物类半导体层时,接着由(000-1)面构成的凹部的一内侧面形成氮化物类半导体层的(000-1)面,因此能够在基板上容易地形成由(000-1)面构成的第一侧面。

在上述第三方面的氮化物类半导体发光二极管中,优选第一侧面和第二侧面由氮化物类半导体层的结晶生长面构成。根据如此构成,能够在与氮化物类半导体层的结晶生长同时分别形成上述第一侧面和第二侧面两种生长面(端面)。

在上述第三方面的氮化物类半导体发光二极管中,优选第二侧面由{A+B、A、-2A-B、2A+B}面(在此,A≥0和B≥0,且A和B中至少一个是不为0的整数)构成。根据如此构成,与在基板上形成不符合{A+B、A、-2A-B、2A+B}面的侧面(端面)时的氮化物类半导体层的生长层的表面(主表面)相比,在基板上形成由{A+B、A-B、-2A、2A+B}面构成的第二侧面时的生长层的表面(上面)能够按照可靠地具有平整性的方式而形成。另外,{A+B、A、-2A-B、2A+B}面的生长速度比氮化物类半导体层的主表面慢,因此通过结晶生长,能够容易地形成第二侧面。

在上述第三方面的氮化物类半导体发光二极管中,优选基板由氮化物类半导体构成。根据如此构成,在由氮化物类半导体构成的基板上,利用氮化物类半导体层的结晶生长,能够容易地形成具有由(000-1)面构成的第一侧面和由{A+B、A、-2A-B、2A+B}面构成的第二侧面的氮化物类半导体层。

在上述第三方面的氮化物类半导体发光二极管中,优选至少第一侧面或第二侧面中任一侧面形成为相对于主表面成钝角。根据如此构成,氮化物类半导体层的第一侧面和第二侧面相对的区域(基板的凹部的上部区域)按照向氮化物类半导体层的上面扩展的方式形成,因此能够容易地将来自发光层的光不仅穿过氮化物类半导体层的上面而且穿过相对于基板的主表面倾斜的第一侧面或第二侧面而输出。由此,能够进一步提高氮化物类半导体发光二极管的发光效率。

在上述第三方面的氮化物类半导体发光二极管中,优选基板包含基底基板、和形成于基底基板上且由AlGaN构成的基底层,设基底基板和基底层的晶格常数分别为c1和c2时,具有c1>c2的关系,第一侧面和第二侧面分别以按照与基底层的(0001)面和主表面实质上平行地延伸的方式形成的裂纹的内侧面为起点而形成。根据如此构成,在基底基板上形成由AlGaN构成的基底层时,由于基底层的晶格常数c2比基底基板的晶格常数c1小(c1>c2),因此基底层的厚度与基底基板的晶格常数c1一致,在基底层的内部发生拉伸应力。其结果是,在基底层的厚度为规定的厚度以上的情况下,不耐该拉伸应力而断开,在基底层上形成裂纹。由此,能够容易地在基底层上形成由(000-1)面构成的内侧面(凹部的一内侧面),其中,该内侧面成为用于在基底层上形成氮化物类半导体层的第一侧面((000-1)面)的基准。

本发明第四方面的氮化物类半导体层的形成方法包括:在具有由非极性面构成的主表面的基板上将(000-1)刻面按照与主表面相连接的方式形成为与主表面大致垂直的工序;和在主表面上形成氮化物类半导体层的工序。

在本发明第四方面的氮化物类半导体层的形成方法中,如上所述,包括与基板的主表面大致垂直地形成(000-1)刻面的工序和在主表面上形成氮化物类半导体层的工序,由此在基板上形成氮化物类半导体层时,按照接着事先与基板的主表面大致垂直地形成的(000-1)刻面的方式,能够形成具有(000-1)面的端面的氮化物类半导体层。由此,不利用解理工序就能够形成具有由(000-1)面构成的端面的氮化物类半导体层。另外,通过包括上述工序,与未形成有(000-1)刻面时的氮化物类半导体层的生长层表面相比,能够提高生长层表面的平整性。另外,如果将本发明的氮化物类半导体层的形成方法应用于半导体激光元件的形成方法,则不利用解理工序就能够形成具有由(000-1)面构成的谐振器端面的氮化物类半导体层(发光层)。

即,如果将本发明应用于在主表面为m面((1-100)面)和a面((11-20)面)的基板上形成由氮化物类半导体层构成的激光元件层的情况,则在通过沿氮化物类半导体层的[0001]方向形成光波导来提高半导体激光器的增益的情况下,能够利用氮化物类半导体层的结晶生长容易地形成在与[0001]方向垂直的方向延伸的一对谐振器端面构成((0001)面和(000-1)面的组合)中的(000-1)面的端面。

在上述第四方面的氮化物类半导体层的形成方法中,优选形成氮化物类半导体层的工序包含:在与(000-1)刻面对应的主表面的区域形成具有由(000-1)面构成的端面的氮化物类半导体层的工序。根据如此构成,能够容易地按照接着形成于基板的(000-1)刻面的方式形成具有由(000-1)面构成的端面的氮化物类半导体层。

在上述第四方面的氮化物类半导体层的形成方法中,优选基板由氮化物类半导体构成。根据如此构成,在由氮化物类半导体构成的基板上,利用氮化物类半导体层的结晶生长,能够容易地形成具有由(000-1)面构成的端面的氮化物类半导体层。

在上述第四方面的氮化物类半导体层的形成方法中,优选主表面为(1-100)面或(11-20)面。在这种情况下,如果将本发明应用于在主表面为m面((1-100)面)和a面((11-20)面)的基板上形成由氮化物类半导体层构成的激光元件层(发光层)的情况,则通过抑制发光层上发生的压电场的影响,能够提高激光的发光效率。

在上述第四方面的氮化物类半导体层的形成方法中,优选基板包含基底基板、和形成于基底基板上的基底层,形成(000-1)刻面的工序包含在基底层上形成(000-1)刻面的工序。根据如此构成,在基底基板的主表面上形成氮化物类半导体层时,利用形成于基底层的(000-1)刻面,按照接着该(000-1)刻面的方式,能够容易地形成具有由(000-1)面构成的端面的氮化物类半导体层。

在这种情况下,优选基底层包含AlGaN层,设基底基板和基底层的晶格常数分别为c1和c2时,基底基板和基底层具有c1>c2的关系。根据如此构成,在基底基板上形成由AlGaN构成的基底层时,由于基底层的晶格常数c2比基底基板的晶格常数c1小(c1>c2),因此当基底层的厚度即将与基底基板的晶格常数c1一致时就在基底层的内部发生拉伸应力。其结果是,在基底层的厚度为规定的厚度以上的情况下,不耐该拉伸应力而断开时就在基底层上沿着(000-1)面形成裂纹。由此,能够容易地在基底层上形成由(000-1)面构成的端面,该端面成为用于在基底层上形成氮化物类半导体层的(000-1)面的基准。

在包含在上述基板的基底层上形成(000-1)面的工序的构成中,优选形成(000-1)刻面的工序还包含:在基底层上形成由实质上与(0001)面平行地形成的裂纹的一个面构成的(000-1)面的工序。根据如此构成,在基板上形成氮化物类半导体层时,按照接着由形成于基底层的裂纹的一面构成的(000-1)面的刻面的方式,能够容易地形成具有由(000-1)面构成的端面的氮化物类半导体层。

在上述第四方面的氮化物类半导体层的形成方法中,优选形成(000-1)刻面的工序还包含形成俯视时在主表面上呈条纹状延伸的(000-1)面的工序。根据如此构成,能够将形成于基板上的氮化物类半导体层的由(000-1)面构成的端面按照在基板的条纹状延伸的(000-1)面条呈纹状延伸的方式形成。

本发明第五方面的氮化物类半导体发光元件的制造方法包括:形成凹部的工序,在具有由(H、K、-H-K、0)面构成的主表面的基板上形成在主表面内的[K、-H、-K+H、0]方向条纹状延伸的凹部;和形成氮化物类半导体元件层的工序,在主表面上的、与凹部的一侧面对应的区域,使氮化物类半导体的由(000-1)面构成的端面生长,并且在与端面相对的区域,使相对于由(000-1)面构成的端面倾斜规定角度地延伸的由氮化物类半导体层的生长面构成的反射面生长,由此形成具有以(H、K、-H-K、0)面为主面的发光层的氮化物类半导体元件层。

在本发明第五方面的氮化物类半导体发光元件的制造方法中,如上所述,包括在与形成于基板的凹部的一侧面对应的区域,使氮化物类半导体的由(000-1)面构成的端面生长,并且在与(000-1)端面相对的区域,使相对于(000-1)端面倾斜规定角度地延伸的氮化物类半导体层的由生长面构成的反射面生长,由此形成氮化物类半导体元件层的工序,通过上述工序,能够在与氮化物类半导体元件层的结晶生长同时得到形成有相对于(000-1)端面倾斜的反射面的氮化物类半导体发光元件。由此,与在基板上生长有平整的半导体元件层后、通过离子束蚀刻等形成相对于谐振器端面倾斜规定角度的反射面的情况不同,不利用复杂的制造工艺就能够形成氮化物类半导体发光元件。另外,利用氮化物类半导体层的生长形成反射面,由此能够形成获得结晶生长实现的良好的平整性的反射面。由此,从(000-1)端面射出的激光不会在反射面上发生反射,一律使射出方向发生变化,并射出到外部,因此能够抑制半导体发光元件的发光效率。

另外,在第五方面的氮化物类半导体发光元件的制造方法中,包括在基板上形成在基板的主表面内的[K、-H、-K+H、0]方向条纹状延伸的凹部的工序、和在与形成于基板的凹部一侧面对应的区域使氮化物类半导体的由(000-1)面构成的端面生长的工序,由此通过结晶生长,利用沿基板的主表面((H、K、-H-K、0)面)内的实质上与c轴方向([0001]方向)正交的[K、-H、-K+H、0]方向延伸的凹部的一侧面,能够在基板上容易地形成具有更具平整性的(000-1)端面的氮化物类半导体元件层。通过具备上述工序,与通过蚀刻和划线等进行端面形成的情况不同,能够简化制造工艺。另外,与通过蚀刻和划线等进行端面形成的情况不同,不必担心端面形成时的杂质等导入下道工序,因此,能够形成具有清洁度高的(000-1)端面的氮化物类半导体元件层。另外,通过具备在基板上形成具有以(H、K、-H-K、0)面为主面的发光层的氮化物类半导体元件层的工序,能够降低在半导体元件层(发光层)上发生的压电场和自发极化等内部电场。由此,能够形成进一步提高了发光效率的半导体发光元件。

在上述第五方面的氮化物类半导体发光元件的制造方法中,优选凹部的一侧面由(000-1)面构成。根据如此构成,通过结晶生长在基板上形成氮化物类半导体层时,能够接着事先形成于基板的凹部的(000-1)面容易地形成具有(000-1)端面的氮化物类半导体元件层。

本发明第六方面的氮化物类半导体激光元件的制造方法包括:形成氮化物类半导体元件层的工序,在基板上形成具有第一端面的氮化物类半导体元件层,该第一端面至少包含相对于基板的主表面倾斜规定角度的倾斜面;和形成谐振器端面的工序,在倾斜面的局部区域,通过蚀刻形成与主表面大致垂直地延伸的谐振器端面,其中,倾斜面和主表面所成的角为锐角。

在本发明第六方面的氮化物类半导体激光元件的制造方法中,如上所述,包括:形成氮化物类半导体元件层的工序,在基板上,形成具有第一端面的氮化物类半导体元件层,该第一端面至少包含相对于基板的主表面成锐角且倾斜规定角度的倾斜面;和形成谐振器端面的工序,在倾斜面的局部区域,形成与主表面大致垂直地延伸的谐振器端面,由此,氮化物类半导体元件层经由比发光层附近的平面积大的平面积而与基板侧连接,因此能够使向基板侧散热的路径的截面积增加其平面积增加的部分那么多。由此,即使是使半导体激光的输出增加的情况,也可将谐振器端面附近的激光器射出光的发热比谐振器端面更适当地经由形成有沿激光的射出方向延伸的倾斜面的氮化物类半导体元件层内部向基板侧扩散。因此,激光器射出光造成的谐振器端面的过度发热得以抑制。由此,能够形成抑制了谐振器端面随着半导体激光器的高输出化而劣化的氮化物类半导体激光元件。另外,通过抑制谐振器端面的劣化,能够实现半导体激光器的长寿命化。

在上述第六方面的氮化物类半导体激光元件的制造方法中,优选主表面由(H、K、-H-K、0)面构成,在形成氮化物类半导体元件层的工序之前,还包括在基板上形成在主表面内的[K、-H、-K+H、0]方向呈条纹状延伸的凹部的工序,形成氮化物类半导体元件层的工序包括:以凹部的一侧面为起点形成由氮化物类半导体元件层的第一生长面构成的第一端面的工序。根据如此构成,在氮化物类半导体元件层的结晶生长时,能够同时形成包含由氮化物类半导体元件层的第一生长面构成的倾斜面的第一端面。

在上述第六方面的氮化物类半导体激光元件的制造方法中,优选形成氮化物类半导体元件层的工序还包括:以凹部的另一侧面为起点形成相对于主表面大致垂直地延伸的由氮化物类半导体元件层的第二生长面构成的第二端面的工序。根据如此构成,在氮化物类半导体元件层的结晶生长时,与倾斜的第一端面同时能够容易地形成相对于基板的主表面大致垂直地延伸的第二端面。

本发明第七方面的氮化物类半导体发光二极管的制造方法包括:在基板的主表面上形成凹部的工序;和形成氮化物类半导体层的工序,在主表面上,通过具有发光层并且包含以凹部的一内侧面为起点的由(000-1)面构成的第一侧面、和在与第一侧面相对的区域以凹部的另一内侧面为起点的第二侧面而形成氮化物类半导体层。

在本发明第七方面的氮化物类半导体发光二极管的制造方法中,如上所述,包括:在基板的主表面上形成凹部的工序;和形成氮化物类半导体层的工序,在主表面上,通过具有发光层并且包含以凹部的一内侧面为起点的由(000-1)面构成的第一侧面和在与第一侧面相对的区域以凹部的另一内侧面为起点的第二侧面而形成氮化物类半导体层,由此在氮化物类半导体层上形成以事先形成于基板的凹部的内侧面为起点的第一侧面和第二侧面。即,在制造工艺上,与对层叠于无凹部等的平整基板上的氮化物类半导体层通过蚀刻加工而形成如上所述的第一侧面或第二侧面的情况不同,由于不需要蚀刻加工,因此能够抑制氮化物类半导体发光二极管的制造工艺复杂化。另外,氮化物类半导体层的第一侧面和第二侧面通过干式蚀刻等而形成,因此,在制造工艺上,不易在发光层等上产生损伤。由此,能够提高来自发光层的光的输出效率。

另外,包括在基板的主表面上形成凹部的工序;和在主表面上,通过包含以凹部的一内侧面为起点的由(000-1)面构成的第一侧面和以凹部的另一内侧面为起点的第二侧面而形成氮化物类半导体层的工序,由此在氮化物类半导体层在基板上进行结晶生长时,与生长层的上面(氮化物类半导体层的主表面)生长的生长速度相比,分别形成以凹部的一内侧面为起点的第一侧面和以凹部的另一内侧面为起点的第二侧面的生长速度慢,因此生长层的上面(主表面)边保持平整性边进行生长。由此,与未形成由上述第一侧面和第二侧面构成的端面时的氮化物类半导体层的生长层表面相比,能够进一步提高具有发光层的半导体导层的表面的平整性。

附图说明

图1是用于对本发明的发光二极管芯片的概要构成进行说明的剖面图;

图2是表示氮化物类半导体的结晶方位、和利用本发明的制造工艺形成氮化物类半导体发光元件时的基板主表面的法线方向的范围的图;

图3是表示本发明第一实施方式的氮化物类半导体激光元件结构的立体图;

图4是用于对图3所示的第一实施方式的氮化物类半导体激光元件的结构进行说明的、沿半导体激光元件的谐振器方向的剖面图;

图5是表示图4所示的第一实施方式的氮化物类半导体激光元件的发光层的详细结构的放大剖面图;

图6是用于对图3所示的第一实施方式的氮化物类半导体激光元件的动作进行说明的剖面图;

图7是用于对图3所示的第一实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图8是用于对图3所示的第一实施方式的氮化物类半导体激光元件的制造工艺进行说明的平面图;

图9是用于对图3所示的第一实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图10是用于对图3所示的第一实施方式的氮化物类半导体激光元件的制造工艺进行说明的放大剖面图;

图11是用于对图3所示的第一实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图12是表示本发明第一实施方式的变形例的氮化物类半导体激光元件结构的剖面图;

图13是利用扫描式电子显微镜观察到图10所示的第一实施方式的制造工艺实现的n型GaN基板上的半导体层结晶生长的情形的显微镜照片。

图14是利用扫描式电子显微镜观察到图10所示的第一实施方式的制造工艺实现的n型GaN基板上的半导体层结晶生长的情形的显微镜照片。

图15是表示本发明第二实施方式的氮化物类半导体激光元件结构的剖面图;

图16是用于对图15所示的第二实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图17是用于对图15所示的第二实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图18是表示本发明第二实施方式的变形例的氮化物类半导体激光元件的结构的剖面图;

图19是表示将本发明第三实施方式的氮化物类半导体激光元件和监测用PD内装辅助底座组合在一起的结构的剖面图;

图20是表示本发明第四实施方式的二维面发光元件的结构的立体图;

图21是表示使用图20所示的第四实施方式的二维面发光元件的面发光激光装置的结构的平面图和剖面图;

图22是表示使用图20所示的第四实施方式的二维面发光元件的面发光激光装置的结构的剖面图;

图23是表示本发明第五实施方式的氮化物类半导体激光元件的结构的立体图;

图24是用于对图23所示的第五实施方式的氮化物类半导体激光元件的结构进行说明的、沿半导体激光元件的谐振器方向的剖面图;

图25是表示图23所示的第五实施方式的氮化物类半导体激光元件的光射出面附近的详细结构的放大剖面图;

图26是表示图23所示的第五实施方式的氮化物类半导体激光元件的发光层的详细结构的放大剖面图;

图27是用于对图23所示的第五实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图28是用于对图23所示的第五实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图29是用于对图23所示的第五实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图30是用于对图23所示的第五实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图31是用于对图23所示的第五实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图32是表示本发明第五实施方式的第一变形例的氮化物类半导体激光元件结构的剖面图;

图33是用于对图32所示的第五实施方式的第一变形例的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图34是用于对图32所示的第五实施方式的第一变形例的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图35是表示本发明第五实施方式的第二变形例的氮化物类半导体激光元件结构的剖面图;

图36是表示本发明第六实施方式的氮化物类半导体激光元件的结构的剖面图;

图37是表示本发明第七实施方式的氮化物类半导体激光元件的结构的剖面图;

图38是用于对图37所示的第七实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图39是用于对图37所示的第七实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图40是用于对图37所示的第七实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图41是表示本发明第八实施方式的第一变形例的氮化物类半导体激光元件结构的剖面图;

图42是用于对图41所示的第八实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图43是用于对图41所示的第八实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图44是用于对图41所示的第八实施方式的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图45是表示本发明第八实施方式的变形例的氮化物类半导体激光元件结构的剖面图;

图46是表示本发明第九实施方式的发光二极管芯片的结构的剖面图;

图47是用于对图46所示的第九实施方式的发光二极管芯片的制造工艺进行说明的剖面图;

图48是表示本发明第十实施方式的发光二极管芯片的结构的剖面图;

图49是用于对图48所示的第十实施方式的发光二极管芯片的制造工艺进行说明的剖面图;

图50是表示本发明第十一实施方式的发光二极管芯片的结构的剖面图;

图51是用于对图50所示的第十一实施方式的发光二极管芯片的制造工艺进行说明的平面图;

图52是用于对图50所示的第十一实施方式的发光二极管芯片的制造工艺进行说明的平面图;

图53是表示本发明第十二实施方式的发光二极管芯片的结构的剖面图;

图54是表示本发明第十三实施方式的发光二极管芯片的结构的剖面图;

图55是表示利用本发明第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件结构的剖面图;

图56是用于对图55所示的氮化物类半导体激光元件的结构进行说明的、沿半导体激光元件的谐振器方向的剖面图;

图57是用于对利用图55所示的第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件的制造工艺进行说明的剖面图;

图58是表示利用本发明第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件结构的剖面图;

图59是用于对利用图58所示的第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件的制造工艺进行说明的剖面图。

具体实施方式

下面,基于附图对本发明的实施方式进行说明。

在对本发明的具体实施方式进行说明之前,首先,参照图1以发光二极管芯片10为例,对本发明的氮化物类半导体发光元件的概要构成进行说明。

如图1所示,发光二极管芯片10在第一半导体1上形成有发光层2。在发光层2上形成有第二半导体3。另外,在第一半导体1的下面上形成有第一电极4,并且在第二半导体3上形成有第二电极5。另外,第一半导体1为本发明的“基板”和“氮化物类半导体层”的一个例子,发光层2和第二半导体3分别为本发明的“氮化物类半导体层”的一个例子。

在此,通常,通过在第一半导体1和第二半导体3之间形成具有比第一半导体1和第二半导体3的禁带宽度(能带隙、带隙、band gap)小的禁带宽度的发光层2而形成双异质(hetero)结构,由此能够容易地将载体封闭在发光层2中,并且可以提高发光二极管芯片10的发光效率。另外,通过将发光层2设定为单量子阱(SQW)结构、多量子阱(MQW)结构,能够进一步提高发光效率。在该量子阱结构的情况下,由于阱层的厚度小,因此在阱层具有变形的情况下,也能够抑制阱层的结晶性变差。另外,阱层即使是在发光层2的主表面2a的平面方向上具有压缩变形的情况、或在平面方向上具有拉伸变形的情况,也能够抑制结晶性变差。另外,发光层2既可以是非掺杂结构,也可以对其进行掺杂。

另外,在本发明中,第一半导体1既可以由基板或半导体层构成,也可以由基板和半导体层的双方构成。另外,在第一半导体1由基板和半导体层双方构成的情况下,基板形成于第一半导体1的与形成第二半导体3的侧相反侧(第一半导体1的下面侧)。另外,基板既可以是生长用基板,也可以用作在使半导体层生长后用于将半导体层支承于半导体层的生长面(主表面)的支承基板。

另外,基板可以使用GaN基板、α-SiC基板。在GaN基板和α-SiC基板上形成有与基板具有相同的主表面的氮化物类半导体层。例如,在α-SiC基板的a面和m面上分别形成有以a面和m面为主表面的氮化物类半导体层。另外,也可以将形成有以a面为主表面的氮化物类半导体层的r面蓝宝石(sapphire)基板用作基板。另外,可以将形成有以a面和m面为主表面的氮化物类半导体层的LiAlO2基板或LiGaO2基板用作基板。

另外,在pn结型发光二极管芯片10中,第一半导体1和第二半导体3具有互不相同的导电性。既可以是第一半导体1为p型,第二半导体3为n型,也可以是第一半导体1为n型,第二半导体3为p型。

另外,第一半导体1和第二半导体3也可以包含禁带宽度比发光层2大的包覆层(clad)(未图示)等。另外,第一半导体1和第二半导体3也可以分别按距离发光层2侧近的顺序包含包覆层和接触层(未图示)。在这种情况下,接触层优选禁带宽度比包覆层小。

另外,作为量子阱发光层2,作为阱层可以使用GaInN,作为阻挡层可以使用禁带宽度比阱层大的AlGaN、GaN和GaInN。另外,作为包覆层和接触层,可以使用GaN和AlGaN。

另外,第二电极5也可以形成于第二半导体3上的局部区域。另外,在发光二极管芯片10为发光二极管的情况下,形成于光的射出侧(上面侧)的电极(此时,第二电极5)优选具有透光性。

接着,参照图2对本发明的利用氮化物类半导体层的形成方法形成半导体发光元件时的基板的面方位进行说明。

如图2所示,基板6的主表面6a的法线方向位于由如下各线包围的范围(用斜线画剖面线的区域)内:将[11-20]方向和大致[10-10]方向连结的线600([C+D、C、-2C-D、0]方向(C≥0和D≥0,且C和D至少任一个是不为0的整数))、和将[11-20]方向和大致[11-2-5]方向连结的线700([1、1、-2、-E]方向(0≤E≤5))、和将[10-10]方向和大致[10-1-4]方向连结的线800([1、-1、0、-F]方向(0≤F≤4))、和将大致[11-2-5]方向和大致[10-1-4]方向连结的线900([G+H、G、-2G-H、-5G-4H]方向(G≥0和H≥0,且G和H至少任一个是不为0的整数))。

(第一实施方式)

首先,参照图3~图6对第一实施方式的氮化物类半导体激光元件50的结构进行说明。

在该第一实施方式的氮化物类半导体激光元件50中,如图3和图4所示,在具有约3μm~约4μm厚度的由AlGaN构成的基底层22上形成有具有约3.1μm厚度的半导体激光元件层23,该基底层22形成在具有约100μm厚度的n型GaN基板21上。另外,半导体激光元件层23如图4所示,激光元件端部间(A方向)长度L1具有约1560μm,并且在[0001]方向即谐振器方向(A方向)上分别形成有相对于n型GaN基板21的主表面大致垂直的光射出面50a和光反射面50b。另外,n型GaN基板21和半导体激光元件层23分别为本发明的“基板”和“氮化物类半导体层”的一个例子,光射出面50a为本发明的“端面”的一个例子。另外,光射出面50a和光反射面50b通过从光射出侧和光反射侧各侧的谐振器端面射出的激光强度的大小关系来区别。即,激光的射出强度相对大的一侧为光射出面50a,激光的射出强度相对小的一侧为光反射面50b。

在此,在第一实施方式中,半导体激光元件层23经由基底层22形成在n型GaN基板21的非极性面即由m面((1-100)面)构成的主表面上。另外,在基底层22上形成有具有在结晶生长时形成的由(000-1)面构成的内侧面40a的裂纹40。另外,裂纹40为本发明的“凹部”的一个例子。而且,如图4所示,半导体激光元件层23的光射出面50a由按照接着基底层22的裂纹40的内侧面40a的方式进行结晶生长的由(000-1)面构成的端面构成。另外,半导体激光元件层23的光反射面50b由垂直于[0001]方向(图4的A1方向)的端面即c面((0001)面)形成。

另外,在第一实施方式中,在使基底层22进行结晶生长时,通过利用n型GaN基板21和基底层22的晶格常数差,将作为凹部的裂纹40形成于基底层22,但在使基底层22进行结晶生长后,也可以通过从基底层22的表面侧起进行机械划线、激光划线、切块(dicing)和蚀刻等,来形成包含(000-1)面的内侧面(凹部的内侧面)。另外,在利用上述方法形成凹部的情况下,也可以将基底层22设定为具有与基板(基底基板)即n型GaN基板21同样的晶格常数的GaN。另外,如下所述,通过机械划线、激光划线、切块和蚀刻等,也可以在n型GaN基板21的表面上,直接形成具有由(000-1)面构成的内侧面的凹部(在第二实施方式中,以槽部80的形式来表示)。

另外,在第一实施方式中,如图4所示,在半导体激光元件层23上,在与[000-1]方向(A2方向)的光射出面50a相对的区域,形成有沿着相对于光射出面50a倾斜θ1(=约62°)的方向延伸的反射面50c。另外,反射面50c由伴随半导体激光元件层23形成时的结晶生长的由(1-101)面构成的生长面(刻面)形成。由此,在氮化物类半导体激光元件50中,如图6所示,构成为:能够将从后述的发光层26的光射出面50a沿A2方向射出的激光,通过反射面50c使射出方向变化为相对于光射出面50a倾斜θ2(=约34°)的方向,然后射出到外部。另外,如图4所示,通过制造工艺时的片状解理,在半导体激光元件层23的A2方向的端部形成有半导体激光元件层23的由(000-1)面构成的端面50d。

另外,半导体激光元件层23包含缓冲层24、n型包覆层25、发光层26、p型包覆层27和p型接触层28。具体而言,如图3和图4所示,在形成于n型GaN基板21上的基底层22的上面上,形成有具有约1.0μm厚度的由非掺杂Al0.01Ga0.99N构成的缓冲层24、和具有约1.9μm厚度的由Ge掺杂Al0.07Ga0.93N构成的n型包覆层25。

另外,在n型包覆层25上形成有发光层26。如图5所示,发光层26从距离n型包覆层25近(参照图4)的一侧起依次由具有约20nm厚度的由Al0.2Ga0.8N构成的n侧载块(Carrier Block)层26a、MQW活性层26d、具有约0.8nm厚度的由非掺杂In0.01Ga0.99N构成的P侧光导层26e、具有约20nm厚度的由Al0.25Ga0.75N构成的载块层26f构成。另外,MQW活性层26d的具有约2.5nm厚度的由非掺杂In0.15Ga0.85N构成的三层量子阱层26b、和具有约20nm厚度的由非掺杂In0.02Ga0.98N构成的三层量子阻挡层26c交替地层叠。n型包覆层25的禁带宽度比MQW活性层26d大。另外,也可以在n侧载块层26a和MQW活性层26d之间,形成具有n侧载块层26a和MQW活性层26d的中间的禁带宽度的光导层等。另外,MQW活性层26d也可以用单层或SQW结构来形成。

另外,如图3和图4所示,在发光层26上形成有具有约0.5μm厚度的由Mg掺杂Al0.07Ga0.93N构成的p型包覆层27。p型包覆层27的禁带宽度比MQW活性层26d大。另外,在p型包覆层27上形成有具有约3nm厚度的由非掺杂In0.07Ga0.93N构成的p型接触层28。另外,缓冲层24、n型包覆层25、发光层26、p型包覆层27和p型接触层28分别为本发明的“氮化物类半导体层”的一个例子。

另外,如图3所示,在p型接触层28的上面上的规定的区域形成有具有约200nm厚度的由SiO2构成的电流区块层29。

另外,在p型接触层28的上面上的未形成有电流区块层29的区域(图3的B方向的中央部附近)形成有p侧电极30,该p侧电极30从距离p型接触层28的上面近的一侧起依次由具有约5nm厚度的Pt层、和具有约100nm厚度的Pd层、和具有约150nm厚度的Au层构成。另外,p侧电极30以覆盖电流区块层29的上面上的方式形成。

另外,如图3和图4所示,在n型GaN基板21的下面上形成有从距离n型GaN基板21近的一侧起依次由具有约10nm厚度的Al层、和具有约20nm厚度的Pt层、和具有约300nm厚度的Au层构成的n侧电极31。如图4所示,该n侧电极31按照延伸到氮化物类半导体激光元件50的A方向的两侧部的方式形成于n型GaN基板21的下面上的全面(整个面)。

接着,参照图3~图5和图7~图11对第一实施方式的氮化物类半导体激光元件50的制造工艺进行说明。

首先,如图7所示,利用有机金属气相生长法(MOCVD法),在n型GaN基板21上使基底层22生长,以使其具有约3μm~约4μm厚度。另外,在基底层22进行结晶生长时,由AlGaN构成的基底层22的[0001]方向的晶格常数c2比n型GaN基板21的[0001]方向的晶格常数c1小(c1>c2),因此达到规定厚度的基底层22与n型GaN基板21的晶格常数c1一致,在基底层22的内部发生拉伸应力R。其结果是,随着基底层22的局部沿A方向收缩,在基底层22上形成图7所示的裂纹40。此时,如图8所示,裂纹40在n型GaN基板21的与[0001]方向(A方向)正交的[11-20]方向(B方向)上形成为条纹状。

另外,在第一实施方式中,如图7所示,在基底层22上形成裂纹40时,在裂纹40内形成由AlGaN层的(000-1)面构成且到达n型GaN基板21的上面的(1-100)面的内侧面40a。该内侧面40a形成为相对于n型GaN基板21的由(1-100)面构成的主表面大致垂直。在此,裂纹40由于利用发生于基底层22内部的拉伸应力R而形成,因此与通过外部加工技术(例如,机械划线、激光划线、切块和蚀刻等)形成凹部的情况不同,可以容易地使内侧面40a与结晶学的晶面指数(000-1)面一致。其结果是,能够将内侧面40a形成为极平整的(000-1)面,因此在平整的内侧面40a上使半导体激光元件层23进行结晶生长时,能够容易地使具有接着内侧面40a的(000-1)面的那种平整的端面的半导体激光元件层23生长。

另外,在第一实施方式中,如上所述,在基底层22的内部形成有到达n型GaN基板21的上面的裂纹40,因此能够将晶格常数与n型GaN基板21不同的基底层22的晶格变形撑开。因此,基底层22的结晶质量良好,能够使形成于基底层22上的半导体激光元件层23成为高质量的结晶状态。其结果是,可以提高后述的工序中形成的n型包覆层25、n侧载块层26a、载块层26f、p型包覆层27和p型接触层28等电特性,并且可抑制这些层内的光吸收。另外,可以降低发光层26(n侧载块层26a、MQW活性层26d、p侧光导层26e和载块层26f)的内部损耗,并且可以提高发光层26的发光效率。另外,在第一实施方式中,在基底层22的内部形成有到达n型GaN基板21的上面的裂纹40,但也可以在基底层22的厚度方向(图7的箭头C2方向)上形成深度与基底层22的厚度相当的槽部。如此构成也能够通过深度与基底层22的厚度相当的槽部将基底层22的内部变形撑开,因此能够得到与形成裂纹40时同样的效果。

接着,如图9所示,利用MOCVD法,在形成有裂纹40的基底层22上依次使缓冲层24、n型包覆层25、发光层26(详细情况参照图5)、p型包覆层27和p型接触层28生长,形成半导体激光元件层23。

在上述半导体激光元件层23的形成中,具体而言,首先,在将基板温度保持在约1000℃的生长温度的状态下,将由含有Ga原料即TMGa(三甲基镓)和Al原料即TMAl(三甲基铝)的氢气H2构成的运载气体供给到反应炉内,在n型GaN基板21上使缓冲层24生长。接着,将由含有TMGa和TMAl、和用于得到n型导电性的Ge杂质的原料即GeH4(甲锗烷)的氢气H2构成的运载气体供给到反应炉内,在缓冲层24上使n型包覆层25生长。其后,将含有TMGa和TMAl的氢气H2供给到反应炉内,在n型包覆层25上使n侧载块层26a生长。

接着,在将基板温度下降到约850℃的生长温度并进行保持的状态下,向在反应炉内供给有NH3气体的氮气氛围气中,供给Ga原料即TEGa(三乙基镓)和In原料即TMIn(三甲基铟),使MQW活性层26d和p侧光导层26e生长。而且,将TMGa和TMAl供给到反应炉内,使载块层26f生长。由此,形成发光层26(参照图5)。

接着,在将基板温度上升到约1000℃的生长温度并进行保持的状态下,向在反应炉内供给有NH3气体的氢气和氮气氛围气中,供给p型杂质即Mg的原料即Mg(C5H5)2(环戊二烯基镁)、Ga原料即TMGa和Al原料即TMAl,在发光层26上使p型包覆层27生长。其后,再次在将基板温度下降到约850℃的生长温度并进行保持的状态下,向在反应炉内供给有NH3气体的氮气氛围气中,供给Ga原料即TEGa和In原料即TMIn,使p型接触层28生长。如此,在基底层22上形成半导体激光元件层23。

在此,在第一实施方式的制造工艺中,如图10所示,在基底层22上使半导体激光元件层23生长的情况下,在沿B方向(参照图8)条纹状延伸的裂纹40的由(000-1)面构成的内侧面40a上,半导体激光元件层23按照接着裂纹40的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的(000-1)面,边进行结晶生长。由此,与通过蚀刻和划线等形成端面的情况不同,不会使制造工艺复杂化,能够容易地将半导体激光元件层23的(000-1)面形成为氮化物类半导体激光元件50的一对谐振器端面中的光射出面50a。

另外,在第一实施方式的制造工艺中,如图10所示,在裂纹40的与内侧面40a相对的内侧面40b侧,半导体激光元件层23形成沿相对于光射出面50a倾斜θ1(=约62°)的方向延伸的作为生长面的反射面50c。该反射面50c为伴随半导体激光元件层23结晶生长的由(1-101)面构成的刻面(生长面)。由此,在半导体激光元件层23结晶生长时,可以同时形成相对于n型GaN基板21的主表面大致垂直的光射出面50a、和反射面50c。

另外,在第一实施方式的制造工艺中,不通过蚀刻和划线等进行射出面50a和反射面50c等端面形成。因此端面(射出面50a和反射面50c)形成时的杂质等不可能导入下道工序,因此能够形成具有清洁度高的由(000-1)端面构成的光射出面50a、和由(1-101)面构成的反射面50c的半导体激光元件层23。

而且,在氮气氛围气中,在约800℃的温度条件下,进行p型化退火处理。另外,如图3所示,在p型接触层28的上面上通过光刻形成抗蚀剂图案后,以其抗蚀剂图案为掩模,进行干式蚀刻等,由此形成由SiO2构成的电流区块层29。另外,如图3和图11所示,利用真空蒸镀法,在电流区块层29上和未形成有电流区块层29的p型接触层28上,形成p侧电极30。另外,图11表示形成有电流区块层29的位置的沿着半导体激光元件的谐振器方向(A方向)的剖面结构。

此后,如图11所示,按照n型GaN基板21的厚度达到约100μm的方式,将n型GaN基板21的下面研磨后,利用真空蒸镀法,在n型GaN基板21的下面上形成n侧电极31。

而且,如图11所示,在n侧电极31的下面侧的希望形成规定的(0001)面的位置,通过激光划线或机械式划线,按照沿与n型GaN基板21的[0001]方向(图3的A方向)正交的方向(图3的B方向)延伸的方式,形成直线状的线槽41。在该状态下,如图11所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板21的下面侧为支点附加荷重,由此将晶片在线槽41的位置(解理线1000)解理。由此半导体激光元件层23的(0001)面形成为氮化物类半导体激光元件50的一对谐振器端面中的光反射面50b。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图3和图4所示的第一实施方式的氮化物类半导体激光元件50。

在第一实施方式中,如上所述,包括沿相对于由(000-1)面构成的光射出面50a倾斜θ1(=约62°)的方向延伸的半导体激光元件层23结晶生长时的生长面即由(1-101)面构成的反射面50c,由此在n型GaN基板21的主表面上,在形成半导体激光元件层23时的结晶生长时,能够同时形成相对于光射出面50a倾斜的反射面50c。由此,与在n型GaN基板上生长有平整的半导体元件层后、通过离子束蚀刻等形成相对于谐振器端面(光射出面)倾斜规定角度的反射面的情况不同,能够抑制氮化物类半导体激光元件50的制造工艺复杂化。

另外,在第一实施方式中,将反射面50c按照由半导体激光元件层23的生长面(刻面)即(1-101)面构成的方式来构成,由此在反射面50c上能够得到良好的平整性。由此能够将从光射出面50a射出的激光不在反射面50c上发生散射就一律使射出方向变化为相对于光射出面50a倾斜θ2(=约34°)的方向而射出到外部。因此,与通过离子束蚀刻等而形成具有微小凹凸形状的反射面的半导体激光元件不同,能够抑制氮化物类半导体激光元件50的发光效率降低。

另外,在第一实施方式中,通过在n型GaN基板21上包括具有以(1-100)面为主面的发光层26的半导体激光元件层23,能够降低在半导体激光元件层23(发光层26)上发生的压电场。由此,能够提高激光的发光效率。

另外,在第一实施方式中,通过将由(000-1)面构成的光射出面50a按照由半导体激光元件层23的生长面构成的方式来构成,能够在半导体激光元件层23结晶生长时同时形成光射出面50a。由此,与在n型GaN基板上生长有半导体元件层后、通过离子束蚀刻等形成相对于谐振器端面(光射出面)倾斜规定角度的反射面的情况不同,能够抑制氮化物类半导体激光元件50的制造工艺复杂化。

另外,在第一实施方式中,能够使用由GaN构成的n型GaN基板21,能够在n型GaN基板21上,利用氮化物类半导层的结晶生长,容易地形成相对于光射出面50a倾斜θ1(=约62°)的反射面50c。

另外,在第一实施方式中,通过使用具有由m面((1-100)面)构成的主表面的n型GaN基板21,在特别是具有由无极性面构成的主表面的n型GaN基板21上形成半导体激光元件层23(发光层26),因此能够进一步降低在半导体激光元件层23上发生的压电场。由此,能够进一步提高激光的发光效率。

另外,在第一实施方式中,形成于半导体激光元件层23的反射面50c具有(1-101)面的面方位,由此上述反射面50c通过利用氮化物类半导体层的结晶生长而由氮原子覆盖大部分表面,因此抑制氛围气中的氧被摄入反射面50c。由此抑制反射面50c随着氧化而劣化。其结果是,不会在激光的反制率上产生时效变化,能够得到稳定的激光。

另外,在第一实施方式中,在n型GaN基板21上形成基底层22,并且将半导体激光元件层23的由(000-1)面构成的光射出面50a沿着裂纹40的由内侧面40a构成的(000-1)面形成为相对于n型GaN基板21的主表面大致垂直,该裂纹40按照沿n型GaN基板21的主表面即m面((000-1)面)的[11-20]方向(图8的箭头B方向)条纹状延伸的方式形成于基底层22。由此,在n型GaN基板21的主表面上形成氮化物类半导体层时,利用在n型GaN基板21的m面((000-1)面)内的实质上与c轴方向([0001]方向)正交的[11-20]方向上形成的裂纹40的内侧面40a,能够容易地形成具有与n型GaN基板21的主表面大致垂直的由(000-1)面构成的光射出面50a的半导体激光元件层23。

另外,在第一实施方式中,通过将形成于n型GaN基板21上的裂纹40的内侧面40a按照由(000-1)面构成的方式来构成,由此在n型GaN基板21上形成半导体激光元件层23时,能够接着形成于n型GaN基板21上的基底层22的裂纹40的(000-1)面容易地形成具有由(000-1)端面构成的光射出面50a的半导体激光元件层23。

(第一实施方式的变形例)

参照图12对下述情况进行说明:在该第一实施方式的变形例的氮化物类半导体激光元件60中,与上述第一实施方式不同,半导体激光元件层23经由基底层22形成于由n型GaN基板61的非极性面即a面((11-20)面)构成的主表面上。另外,n型GaN基板61是本发明的“基板”的一个例子。

在此,在第一实施方式的变形例中,如图12所示,半导体激光元件层23的光射出面60a由按照接着基底层22的裂纹40的内侧面40a的方式进行结晶生长的由(000-1)面构成的端面构成。另外,在半导体激光元件层23上,在[000-1]方向(A2方向)的与光射出面60a相对的区域,形成有沿相对于光射出面60a倾斜θ3(=约58°)的方向延伸的反射面60c。另外,反射面60c由随着半导体激光元件层23形成时的结晶生长的由(11-22)面构成的刻面形成。由此,在氮化物类半导体激光元件60中,构成为:将从发光层26的光射出面60a沿A2方向射出的激光,通过反射面60c,使射出方向变化为相对于光射出面60a倾斜θ4(=约26°)的方向,并射出到外部。

另外,如图12所示,在半导体激光元件层23的A2方向的端部,通过制造工艺时的片状解理,形成有半导体激光元件层23的由(000-1)面构成的端面60d。另外,第一实施方式的变形例的氮化物类半导体激光元件60的其他结构和制造工艺与上述第一实施方式同样。

在第一实施方式的变形例中,如上所述,在面方位以a面((11-20)面)为主表面的n型GaN基板61上,经由基底层22,利用结晶生长,形成包含由(000-1)面构成的光射出面60a、和由(11-22)面构成的反射面60c的半导体激光元件层23,由此与上述第一实施方式同样,与在n型GaN基板上生长有平整的半导体元件层后、通过离子束蚀刻等分别形成光射出面和光反射面、和反射面而形成半导体激光元件的情况不同,能够抑制制造工艺复杂化。另外,第一实施方式的变形例的氮化物类半导体激光元件60的其他效果与上述第一实施方式同样。

[实施例]

参照图8、图13和图14对为确认上述第一实施方式的效果而进行的实验进行说明。

在该确认实验中,首先,利用与上述第一实施方式的制造工艺同样的制造工艺,在具有由m面(1-100)面构成的主表面的n型GaN基板上,利用MOCVD法,形成具有3μm~4μm厚度的由AlGaN构成的基底层。这时,因n型GaN基板和基底层的晶格常数差而在基底层上形成图13和图14所示的裂纹。此时,如图14所示,确认裂纹形成有沿相对于n型GaN基板的主表面垂直的方向延伸的(000-1)面。另外,如图8所示,确认裂纹在与n型GaN基板的[0001]方向正交的[11-20]方向上形成为条纹状。

接着,利用MOCVD法,使由GaN构成的半导体层在基底层上进行外延生长。该结果确认,如图14所示,在裂纹的由(000-1)面构成的内侧面侧,半导体层按照接着该面方位的方式边形成沿垂直方向(C2方向)延伸的GaN的(000-1)面,边沿[1-100]方向进行结晶生长。另外确认,如图14所示,在裂纹的与(000-1)面相反侧的内侧面上形成由GaN的(1-101)面构成的倾斜面(刻面)。另外确认,该倾斜面按照相对于半导体导层的上面(主表面)成钝角的方式形成。由此确认,设置于基底层的裂纹的两个内侧面分别成为结晶生长的起点,可以在基底层上形成半导体层。即,认为在与结晶生长实现的半导体层的形成同时,利用设置于基底层的裂纹的一侧面,不利用解理工序和蚀刻等就可以在半导体层(发光层)上形成由(000-1)面构成的谐振器端面(光射出面或光反射面(半导体层的垂直的侧面))、和由(1-101)面构成的端面(半导体层的倾斜面)。

另外确认,在半导体层进行结晶生长的过程中,根据形成上述(000-1)面和(1-101)面的部分的生长速度、和半导体层的上面(主表面)向箭头C2方向(参照图14)生长的生长速度之差,不仅能够提高上述(000-1)面和(1-101)面的平整性,而且能够提高半导体层的上面的平整性。另外确认,在形成时,到达n型GaN基板的裂纹随着半导体层的层叠,其空隙的一部分被填埋。

由上述确认实验的结果确认,在本发明的氮化物类半导体激光元件和其制造方法中,在与结晶生长实现的半导体层的形成同时,可以在半导体层(发光层)上同时形成由(000-1)面构成的谐振器端面的一侧面(光射出面)、和倾斜面(反射面)。

(第二实施方式)

在该第二实施方式的氮化物类半导体激光元件70中,与上述第一实施方式不同,参照图15~图17对在n型GaN基板71的由(1-100)面构成的主表面上利用蚀刻技术形成沿[11-20]方向(图15的垂直于纸面的方向)延伸的槽部80后再形成半导体激光元件层23的情况进行说明。另外,n型GaN基板71是本发明的“基板”的一个例子,槽部80是本发明的“凹部”的一个例子。

在本发明的第二实施方式的氮化物类半导体激光元件70中,如图15所示,在n型GaN基板71上形成有具有与第一实施方式同样的结构的半导体激光元件层23。另外,半导体激光元件层23的谐振器长具有约1560μm,并且在[0001]方向即谐振器方向上,分别形成有相对于n型GaN基板71的主表面大致垂直的光射出面70a和光反射面70b。另外,光射出面70a是本发明的“端面”的一个例子。

在此,在第二实施方式中,如图16所示,与上述第一实施方式的氮化物类半导体激光元件50的制造工艺不同,在n型GaN基板71的由(1-100)面构成的主表面上,利用蚀刻技术,形成在[0001]方向(A方向)上具有约10μm的宽度W1、并且具有约2μm深度、沿[11-20]方向(B方向)延伸的槽部80。另外,槽部80在A方向上以约1600μm(=W1+L2)周期形成为条纹状。另外,此时,在槽部80形成相对于n型GaN基板71的(1-100)面大致垂直的由(000-1)面构成的内侧面80a、和相对于n型GaN基板71的(1-100)面大致垂直的由(0001)面构成的内侧面80b。另外,内侧面80a是本发明的“凹部的一侧面”的一个例子。

其后,如图17所示,在n型GaN基板71上,将缓冲层24、n型包覆层25、发光层26、p型包覆层27和p型接触层28依次层叠,由此形成半导体激光元件层23。

此时,在第二实施方式中,如图17所示,在槽部80的由(000-1)面构成的内侧面80a上,半导体激光元件层23按照接着槽部80的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的(000-1)面,边进行结晶生长。由此,半导体激光元件层23的(000-1)面形成为氮化物类半导体激光元件70的一对谐振器端面中的光射出面70a。另外,在槽部80的与(000-1)面相对的(0001)面(内侧面80b)侧,半导体激光元件层23边形成沿相对于光射出面70a倾斜角度θ1(=约62°)的方向延伸的由(1-101)面构成的反射面70c(刻面),边进行结晶生长。

其后,依次形成电流区块层29、p侧电极30和n侧电极31。而且,如图17所示,在n侧电极31的下面侧的与(000-1)半导体端面对应的位置、和形成有规定的(0001)面的位置,通过激光划线或机械式划线,形成沿与n型GaN基板71的槽部80平行(图11的B方向)地延伸的直线状的线槽41。在该状态下,如图15所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板71的下面侧为支点附加荷重,由此将晶片在线槽41的位置(解理线1000)解理。由此半导体激光元件层23的(0001)面形成为氮化物类半导体激光元件70的一对谐振器端面中的光反射面70b。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图15所示的第二实施方式的氮化物类半导体激光元件70。

在第二实施方式中,如上所述,包括沿相对于由(000-1)面构成的光射出面70a倾斜θ1(=约62°)的方向延伸的半导体激光元件层23结晶生长时的生长面即由(1-101)面构成的反射面70c,由此在n型GaN基板71的主表面上,在形成半导体激光元件层23时的结晶生长时,能够同时形成相对于光射出面70a倾斜的反射面70c。由此,与第一实施方式同样,与在n型GaN基板上生长有平整的半导体元件层后、通过离子束蚀刻等形成谐振器端面(光射出面)和反射面的情况不同,能够抑制半导体激光元件的制造工艺复杂化。

另外,在第二实施方式中,也将反射面70c按照由半导体激光元件层23的生长面即(1-101)面构成的方式来构成,由此在反射面70c上能够得到良好的平整性。由此与第一实施方式同样,从光射出面70a射出的激光不会在反射面70c上发生散射,射出方向变化为一致,因此,能够抑制氮化物类半导体激光元件70的发光效率降低。另外,第二实施方式的氮化物类半导体激光元件70的其他效果与上述第一实施方式同样。

(第二实施方式的变形例)

参照图18对下述情况进行说明:在该第二实施方式的变形例的氮化物类半导体激光元件90中,与上述第二实施方式不同,半导体激光元件层23形成于由n型GaN基板91的非极性面即a面((11-20)面)构成的主表面上。另外,n型GaN基板91是本发明的“基板”的一个例子。

在此,在第二实施方式的变形例中,如图18所示,半导体激光元件层23的光射出面90a由按照接着槽部80的内侧面80a的方式进行结晶生长的由(000-1)面构成的端面构成。另外,在半导体激光元件层23上,在[000-1]方向(A2方向)的与光射出面90a相对的区域,形成有沿相对于光射出面90a倾斜θ3(=约58°)的方向延伸的反射面90c。另外,反射面90c由随着半导体激光元件层23形成时的结晶生长的由(11-22)面构成的刻面(生长面)形成。由此,在氮化物类半导体激光元件90中,构成为:将从发光层26的光射出面90a射出的激光,通过反射面90c,使射出方向变化为相对于光射出面90a倾斜θ4(=约26°)的方向,并射出到外部。

另外,第二实施方式的变形例的氮化物类半导体激光元件90的其他结构和制造工艺与上述第二实施方式同样。另外,关于第二实施方式的变形例的效果,与上述第二实施方式同样。

(第三实施方式)

参照图19对将第三实施方式的氮化物类半导体激光元件100和监测用PD(光电二极管)内装辅助底座110组合的结构进行说明。

在该第三实施方式中,如图19所示,具有与上述第一实施方式所示的氮化物类半导体激光元件50同样的结构的氮化物类半导体激光元件100固定于由Si构成的监测用PD内装辅助底座110。另外,在监测用PD内装辅助底座110的大致中央部形成有凹部110a,并且在凹部110a的内底面部装有PD(光电二极管)111。另外,PD111是本发明的“光传感器”的一个例子。

在此,在第三实施方式中,监测用PD内装辅助底座110的主表面110b以相对于背面110c倾斜θ5(=约34°)的状态而形成。而且,氮化物类半导体激光元件100按照沿A方向横跨向监测用PD内装辅助底座110的主表面110b侧开口的凹部110a的方式固定于主表面110b。

在此,在第三实施方式中,氮化物类半导体激光元件100为端面发光型激光元件,如图19所示,从发光层26射出的激光构成为:从由(0001)面构成的端面100a(光射出面)射出的激光101a的射出强度比从由(000-1)面构成的端面100b(光反射面)射出的激光101b的射出强度大。

因此,在监测用PD内装辅助底座110中,如图19所示,构成为:从氮化物类半导体激光元件100的端面100b射出到反射面100c的激光101b通过由(1-101)面构成的反射面100c而入射到设置于监测用PD内装辅助底座110的PD111。此时,由于监测用PD内装辅助底座110的主表面110b倾斜角度θ5(=约34°),因此激光101b实质上相对于PD111垂直地入射。

在第三实施方式中,如上所述,构成为:将从氮化物类半导体激光元件100的发光层26的由(000-1)面构成的端面100b射出的激光101b,通过半导体激光元件层23的结晶生长时的生长面即由(1-101)面构成的反射面100c,使射出方向变化为与来自发光层26的射出方向正交的方向,并且构成为:通过将氮化物类半导体激光元件100和监测用PD(光电二极管)内装辅助底座110组合,使激光101b实质上相对于监测用PD内装辅助底座110的PD111垂直地入射,由此能够将由作为结晶生长面具有良好的平整性的反射面100c抑制了光的散射的激光101b(监测端面射出型激光元件的激光强度的抽样光)导入PD111,因此能够更正确地测定激光强度。

(第四实施方式)

参照图6、图15和图20~图22对第四实施方式的二维面发光元件120和使用该发光元件的面发光型激光装置150的结构进行说明。

如图20所示,该第四实施方式的二维面发光元件120在形成上述第二实施方式的氮化物类半导体激光元件70(参照图15)时,通过在晶片上沿纵方向和横方向分别三个三个(合计9个)地排列进行二维化来形成。

在此,在第四实施方式中,如图20所示,在通过与上述第二实施方式同样的制造工艺形成二维面发光元件120的半导体激光元件层23之后,利用蚀刻技术,形成有用于将在谐振器方向(A方向)上相邻的氮化物类半导体激光元件70的半导体激光元件层23彼此沿A方向分离的分离槽部81。通过形成该分离槽部81,各氮化物类半导体激光元件70的谐振器端面中的端面120b(光反射面)形成于半导体激光元件层23。

另外,在第四实施方式中,如图20所示,可构成为:使从二维面发光元件120的各氮化物类半导体激光元件70的由(0001)面构成的端面120a(光射出面)射出的9条激光,通过由(1-101)面构成的反射面120c,使射出方向变化为相对于光射出面120a倾斜约34°(相当于图6的角度θ2)的方向,而向上方射出。另外,如图20所示,在半导体激光元件层23的A2方向的端部通过制造工艺时的片状解理而形成有半导体激光元件层23的由(000-1)面构成的端面120d。

另外,图21和图22表示使用二维面发光元件120的面发光型激光装置150。在该面发光型激光装置150中,经由AuSn等导电性粘接层(未图示)固定于形成有角度θ6(=θ2=约34°)的倾斜面151a的由铁和铜等构成的块部(楔部)151的二维面发光元件120固定于铁和铜等构成的基座部152。另外,在基座部152设置有两个引线端子153和154。

由此,在图22所示的面发光型激光装置150中,可使从二维面发光元件120的端面120a(参照图20)射出的9条激光通过反射面120c(参照图20)反射使射出方向变化为相对于块部151的上面151a基本垂直的方向而射出。

另外,如图21所示,在二维面发光元件120的各氮化物类半导体激光元件70的上面的p侧电极30上,利用Au导线160,与基座部152的引线端子153进行引线接合。另外,在块部151的倾斜面151a上,利用Au导线161,与基座部152的引线端子154进行引线接合。即,形成于氮化物类半导体激光元件70的下面上的n侧电极31经由导电性粘接层(未图示)、块部151和Au导线161而与引线端子154导通。

在第四实施方式中,如上所述,将二维面发光元件120固定于块部151的倾斜面151a,并且使从各氮化物类半导体激光元件70的由(000-1)面构成的端面120a(参照图20)射出的9条激光在半导体激光元件层23的结晶生长时的生长面即由(1-101)面构成的反射面120c(参照图20)上反射使射出方向变化为相对于基座部152的倾斜面151a基本垂直的方向而射出,由此该9条激光作为面发光型激光装置150的光源来使用。由此,由于通过作为结晶生长面具有良好的平整性的多个反射面120c(9个部位)而抑制了光的散射的多个激光(9条)射出,因此能够形成提高了发光效率的面发光型激光装置150。

(第五实施方式)

首先,参照图23~图26对第五实施方式的氮化物类半导体激光元件200的结构进行说明。

在该第五实施方式的氮化物类半导体激光元件200中,如图23和图24所示,在具有约3μm~约4μm厚度的由AlGaN构成的基底层22上形成有具有约3.1μm厚度的半导体激光元件层223,该基底层22形成于具有约100μm厚度的n型GaN基板221上。另外,n型GaN基板221和半导体激光元件层223分别是本发明的“基板”和“氮化物类半导体元件层”的一个例子。另外,如图24所示,半导体激光元件层223形成为:激光元件端部间(箭头A方向)长度L3具有约1560μm。

在此,在第五实施方式中,如图24所示,半导体激光元件层223经由基底层22形成于n型GaN基板221的由m面((1-100)面)构成的主表面上。另外,在半导体激光元件层223上分别形成有相对于n型GaN基板221的主表面大致垂直的光射出面200a和光反射面200b。另外,光射出面200a和光反射面200b分别是本发明的“第一端面”和“第二端面”的一个例子。

另外,在第五实施方式中,如图24所示,在半导体激光元件层223上形成有倾斜面200c和200d,该倾斜面200c和200d从光射出面200a的下端部起,相对于与n型GaN基板221的主表面垂直的方向[1-100]方向(C2方向)倾斜角度θ1(=约62°),并且沿后述的发光层226的附近区域发出的激光的射出方向(A1方向(向激光元件的外部远离光射出面200a的方向))延伸。另外,形成有倾斜面200e,该倾斜面200e从光射出面200a的上端部起,相对于与n型GaN基板221的主表面垂直的方向[1-100]方向(C2方向)倾斜角度θ1(=约62°),并且沿A2方向延伸。因此,如图24所示,倾斜面200c、200d和200e、和n型GaN基板221的主表面按照成锐角的方式来形成。另外,倾斜面200c、200d和200e分别是本发明的“第一端面”的一个例子。

另外,在第五实施方式中,如图25所示,倾斜面200c从位于射出面200a的下部的后述的n型包覆层225向n型GaN基板221侧倾斜延伸,并且经由相对于n型GaN基板221的主表面大致垂直地延伸的端面200f连接于倾斜面200d。另外,n型包覆层225是本发明的“氮化物类半导体元件层”和“第一导电型的第一包覆层”的一个例子。因此,如图23所示,形成于激光射出侧的n型包覆层225在激光的射出方向(A1方向)上比光射出面200a更远的位置经由缓冲层224与n型GaN基板221侧的基底层22连接。

另外,在第五实施方式中,如图24所示,在基底层22上形成有裂纹42,该裂纹42在基底层22进行结晶生长时形成,并且沿n型GaN基板221的[11-20]方向条纹状延伸。而且,半导体激光元件层223的倾斜面200d和200e由以基底层22的裂纹42的内侧面42c的上端部为起点进行结晶生长的由(1-101)面构成的刻面(生长面)构成。另外,裂纹42和内侧面42c分别是本发明的“凹部”和“凹部的一侧面”的一个例子。

另外,在第五实施方式中,如图24所示,半导体激光元件层223的光反射面200b由沿与n型GaN基板221的主表面垂直的方向[1-100]方向(C2方向)延伸、并且按照接着裂纹42的由(000-1)面构成的内侧面42d的方式进行结晶生长的由(000-1)面构成的端面构成。另外,内侧面42d是本发明的“凹部的另一侧面”的一个例子。

另外,如图23和图24所示,半导体激光元件层223包含缓冲层224、n型包覆层225、发光层226、p型包覆层227和p型接触层228。另外,如图26所示,形成于n型包覆层225上的发光层226从距离n型包覆层225近(参照图24)的一侧起依次由:具有约20nm厚度的由Al0.2Ga0.8N构成的n侧载块层226a、和具有约20nm厚度的由非掺杂In0.02Ga0.98N构成的n侧光导层226b、和多量子阱(MQW)活性层226e、和具有约0.08μm厚度的由非掺杂In0.01Ga0.99N构成的p侧光导层226f、和具有约20nm厚度的由Al0.25Ga0.75N构成的载块层226g构成。另外,MQW活性层226e交替地层叠有具有约2.5nm厚度的由非掺杂In0.15Ga0.85N构成的三层量子阱层226c、和具有约20nm厚度的由非掺杂In0.02Ga0.98N构成的三层量子阻挡层226d。

另外,如图23和图24所示,在发光层226上形成有p型包覆层227,该p型包覆层227具有平面部、和按照从平面部的大致中央部向上方(C2方向)突出的方式而形成且具有约1μm厚度的凸部。另外,在p型包覆层227的凸部上形成有具有约3nm厚度的p型接触层228。另外,由p型包覆层227的凸部和p型接触层228形成用于形成氮化物类半导体激光元件200的光波导的脊(ridge)部201。该脊部201形成为:沿谐振器方向(图23的A方向)条纹状(细长状)延伸。另外,缓冲层224、发光层226和p型接触层228分别是本发明的“氮化物类半导体元件层”的一个例子。另外,p型包覆层227是本发明的“氮化物类半导体元件层”和“第二导电型的第二包覆层”的一个例子。

另外,如图23所示,按照覆盖半导体激光元件层223的p型包覆层227的凸部以外的平面部的上面上和脊部201的两侧面的方式,形成有具有约200nm厚度的由SiO2构成的电流区块层229。另外,第五实施方式的其他结构与上述第一实施方式同样。

接着,参照图7~图10、图23、图24、图26和图27~图31对第五实施方式的氮化物类半导体激光元件200的制造工艺进行说明。

首先,与上述第一实施方式的制造工艺同样,在n型GaN基板221上使基底层22(参照图7)生长,并且在基底层22上形成裂纹42。

接着,如图9所示,利用MOCVD法,在形成有裂纹42的基底层22上,依次使缓冲层224、n型包覆层225、发光层226(详细内容参照图26)、p型包覆层227和p型接触层228生长,形成半导体激光元件层223。

在此,在第五实施方式的制造工艺中,如图10所示,在基底层22上,在使半导体激光元件层223生长时,形成有以沿B方向(参照图8)条纹状延伸的裂纹42的内侧面42c的上端部为起点、沿相对于n型GaN基板221的主表面倾斜角度θ1(=约62°)的方向延伸的由(1-101)面构成的刻面。另外,同时,半导体激光元件层223以裂纹42的内侧面42d的上端部为起点,按照接着裂纹42的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的上端面((000-1)面),边进行结晶生长。由此,在半导体激光元件层223上形成由(000-1)面构成的光反射面200b。另外,在半导体层激光元件层223进行结晶生长的过程中,根据形成上述(1-101)面和(000-1)面的部分的生长速度、和半导体激光元件层223的表面(上面)向箭头C2方向(参照图27)生长的生长速度之差,不仅能够提高上述(1-101)面和(000-1)面的平整性,而且也能够提高半导体激光元件层223的表面(上面)的平整性。

另外,在第五实施方式的制造工艺中,如图27所示,按照覆盖半导体激光元件层223的上面上的方式,形成有由SiO2构成且具有数百nm厚度的掩模层202。另外,在掩模层202的上面上通过光刻形成抗蚀层(抗蚀剂图案)203。而且,如图28所示,通过氢氟酸实现的湿式蚀刻,除去未形成有抗蚀层203的部分的掩模层202。其后,如图28所示,在除去掩模层202而露出半导体激光元件层223的由(1-101)面构成的刻面的部分,进行Cl2等实现的反应性离子蚀刻等干式蚀刻。由此,如图29所示,在半导体激光元件层223上形成沿[1-100]方向(C2方向)延伸并且包含n型包覆层225的一部分和发光层226的光射出面200a。另外,此时,如图29所示,形成有从n型包覆层225的上端部附近向n型GaN基板221侧倾斜延伸的倾斜面200c、和与光射出面200a大致平行的端面200f。

其后,如图30所示,通过氢氟酸实现的湿式蚀刻,从半导体激光元件层223中除去掩模层202和抗蚀层203。由此,在半导体激光元件层223的激光射出端面上形成由(1-101)面构成的倾斜面200d和200e、和上述蚀刻实现的光射出面200a和倾斜面200c。

接着,如图23所示,在p型接触层228的上面上,通过光刻形成抗蚀剂图案后,以其抗蚀剂图案为掩模进行干式蚀刻,由此形成脊部201。按照覆盖p型包覆层227的凸部以外的平面部的上面上和脊部201的两侧面的方式,形成电流区块层229。另外,如图23和图31所示,利用真空蒸镀法,在电流区块层229上和未形成有电流区块层229的p型接触层228上形成p侧电极230。另外,图31表示形成有p型接触层228的位置(脊部201附近)的沿着半导体激光元件的谐振器方向(A方向)的剖面结构。

此后,如图31所示,按照使n型GaN基板221的厚度达到约100μm的方式将n型GaN基板221的下面研磨后,利用真空蒸镀法,在n型GaN基板221的下面上形成n侧电极231。

而且,如图31所示,在n侧电极231的下面侧的规定的形成有(0001)面的位置,通过激光划线或机械式划线,按照沿n型GaN基板221的与[0001]方向(A方向)正交的方向(图23的B方向)延伸的方式,形成直线状的线槽41。在该状态下,如图31所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板221的下面侧为支点附加荷重,由此将晶片在线槽41的位置(解理线1000)解理。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图23和图24所示的第五实施方式的氮化物类半导体激光元件200。

在第五实施方式中,如上所述,在半导体激光元件层223上,在光射出面200a、和光射出面200a的附近设置有倾斜面200c和200d,该倾斜面200c和200d与n型GaN基板221的主表面(m面(1-100)面)成锐角,同时相对于与n型GaN基板221的主表面垂直的[1-100]方向倾斜角度θ1(=约62°)地延伸,由此半导体激光元件层223经由比发光层226附近的平面积大的平面积与n型GaN基板221侧连接,因此能够使向n型GaN基板221侧散热的路径的截面积(由倾斜面200c和200d、端面200f、n型包覆层225的主表面((1-100)面)和将光射出面200a沿C1方向延长到n型包覆层225的主表面的假想面(虚线)包围的区域S(参照图23))增加其平面积增加量。由此,即使是使氮化物类半导体激光元件200的输出增加的情况下,光射出面200a附近的激光器射出光的发热也比经由光射出面200a更适当地经由形成有沿激光的射出方向延伸的倾斜面200c和200d的半导体激光元件层223的内部,向n型GaN基板221侧散发。因此,激光器射出光造成的谐振器端面(光射出面200a)的过度发热得以抑制。由此,能够抑制谐振器端面(光射出面200a)随着半导体激光的高输出化而劣化。另外,通过抑制谐振器端面(光射出面200a)的劣化,能够实现氮化物类半导体激光元件200的长寿命化。

另外,在第五实施方式中,将倾斜面200c和200d按照从位于光射出面200a的下部的n型包覆层225向发光层226发出的激光的射出方向(A1方向)侧和n型GaN基板221侧倾斜延伸的方式来构成,由此以位于光射出面200a的发光层226的下部附近的n型包覆层225为起点,在激光的射出方向(A1方向)侧,且朝向n型GaN基板221侧,形成倾斜面200c和200d,因此能够更高效地使在发光层226附近发生的激光(射出光)的发热扩散到n型GaN基板221侧。

另外,在第五实施方式中,通过将光射出面200a、倾斜面200c、200d和200e形成于从发光层226发出的激光的射出侧,在激光器工作时,能够容易地抑制光射出侧的光射出面200a随着更大的发热而劣化。

另外,在第五实施方式中,将倾斜面200c和200e按照由以裂纹42的内侧面42c为起点的由(1-101)面构成的半导体激光元件层223的生长面(刻面)构成的方式来构成,该裂纹42按照沿n型GaN基板221的主表面(m面(1-100)面)内的[11-20]方向条纹状延伸的方式,形成于n型GaN基板221,由此能够与半导体激光元件层223的结晶生长同时形成由具有(1-101)面的生长面构成的倾斜面200c和200e。

另外,在第五实施方式中,包括光反射面200b,该反射面200b形成于半导体激光元件层223的与形成有光射出面200a、倾斜面200c和200e的一侧相反侧,并且沿相对于n型GaN基板221的主表面(m面(1-100)面)大致垂直的方向即[1-100]方向延伸,由此能够形成以光射出面200a、和与光射出面200a相反侧的光反射面200b为一对谐振器面的半导体激光元件层223。

另外,在第五实施方式中,将半导体激光元件层223的光反射面200b以裂纹42的内侧面42d为起点、相对于n型GaN基板221的主表面大致垂直地形成,该裂纹42按照沿n型GaN基板221的主表面(m面(1-100)面)内的[11-20]方向(图26的B方向)条纹状延伸的方式,形成于n型GaN基板221,由此在n型GaN基板221的主表面上形成半导体激光元件层223时,利用在与n型GaN基板221的m面((1-100)面)内的c轴方向([0001]方向)实质上正交的[11-20]方向上形成的裂纹42的内侧面42d,不利用解理工序就能够容易地形成具有与n型GaN基板221的主表面大致垂直的由(000-1)面构成的谐振器端面(光反射面200b)的半导体激光元件层223。

另外,在第五实施方式中,通过在具有由非极性面(m面(1-100)面)构成的主表面的n型GaN基板221上形成半导体激光元件层223,能够降低在半导体元件层(发光层226)上发生的压电场和自发极化等内部电场。由此进一步抑制包含谐振器端面(光射出面200a)附近的半导体激光元件层223(发光层226)的发热,因此能够实现氮化物类半导体激光元件200的长寿命化。

(第五实施方式的第一变形例)

参照图32~图34对下述情况进行说明:在该第五实施方式的第一变形例的氮化物类半导体激光元件210中,与上述第五实施方式不同,在半导体激光元件层223的光射出面210a和倾斜面210c之间具有平台部210e。

在第五实施方式的第一变形例中,在氮化物类半导体激光元件210的制造工艺中,如图33所示,按照覆盖通过结晶生长而形成的半导体激光元件层223的上面上的方式,形成与上述第五实施方式同样的掩模层202和光刻实现的抗蚀层203。而且,如图34所示,通过与上述第五实施方式同样的蚀刻加工,在半导体激光元件层223上形成沿[1-100]方向(C2方向)延伸并且包含n型包覆层225的一部分和发光层226的光射出面210a。另外,光射出面210a是本发明的“第一端面”的一个例子。

在此,在第五实施方式的第一变形例中,如图34所示,通过对形成光射出面210a时的蚀刻条件进行控制,在光射出面210a下部的n型包覆层225上形成向n型GaN基板221侧倾斜延伸的倾斜面210c、和将倾斜面210c与光射出面210a连接的平台部210e。由此,如图32所示,在半导体激光元件层223的激光射出侧端面上分别形成有由(1-101)面构成的倾斜面210d、蚀刻加工形成的光射出面210a、倾斜面210c和平台部210e。另外,倾斜面210c、210d和平台部210e分别是本发明的“第一端面”的一个例子。

另外,如图32所示,在半导体激光元件层223形成时,按照以裂纹42的内侧面42d的上端部为起点接着裂纹42的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的端面((000-1)面),边形成光反射面210b。另外,光反射面210b本发明的“第二端面”的一个例子。

另外,第五实施方式的第一变形例的氮化物类半导体激光元件210的其他结构和制造工艺与上述第五实施方式同样。另外,第五实施方式的第一变形例的氮化物类半导体激光元件210的效果与上述第五实施方式同样。

(第五实施方式的第二变形例)

参照图35对下述情况进行说明:在该第五实施方式的第二变形例的氮化物类半导体激光元件215中,与上述第五实施方式不同,半导体激光元件层223经由基底层22形成于由n型GaN基板251的非极性面即a面((11-20)面)构成的主表面上。另外,n型GaN基板251是本发明的“基板”的一个例子。

在此,在第五实施方式的第二变形例中,如图35所示,在半导体激光元件层223上形成有倾斜面215c和215d,该倾斜面215c和215d从光射出面215a的下端部起,相对于与n型GaN基板251的主表面垂直的方向([11-20]方向(C2方向))倾斜角度θ3(=约58°),并且沿发光层226的附近区域发出的激光的射出方向(A1方向(向激光元件的外部远离光射出面215a的方向))延伸。另外,形成有倾斜面215e,该倾斜面215e从光射出面215a的上端部起,相对于与n型GaN基板251的主表面垂直的方向([11-20]方向(C2方向))倾斜角度θ3(=约58°),并且沿A2方向延伸。因此,如图35所示,倾斜面215c、215d和215e、和n型GaN基板251的主表面按照成锐角的方式来形成。另外,光射出面215a、倾斜面215c、215d和215e分别是本发明的“第一端面”的一个例子。

另外,在第五实施方式的第二变形例中,半导体激光元件层223的倾斜面215c形成为:从位于光射出面215a的下部的n型包覆层225向n型GaN基板251侧倾斜延伸,并且经由相对于n型GaN基板251的主表面大致垂直地延伸的端面215f与倾斜面215d连接。另外,半导体激光元件层223的倾斜面215d和215e由以基底层22的裂纹42的内侧面42c的上端部为起点进行结晶生长的由(11-22)面构成的刻面(生长面)构成。

另外,在第五实施方式的第二变形例中,半导体激光元件层223的光反射面215b由向与n型GaN基板251的主表面垂直的方向([11-20]方向(C2方向))延伸、并且按照接着裂纹42的由(000-1)面构成的内侧面42d的方式进行结晶生长的由(000-1)面构成的端面构成。另外,光反射面215b是本发明的“第二端面”的一个例子。

另外,第五实施方式的第二变形例的氮化物类半导体激光元件215的其他结构和制造工艺与上述第五实施方式同样。另外,第五实施方式的第二变形例的氮化物类半导体激光元件215的效果与上述第五实施方式同样。

(第六实施方式)

参照图36对下述情况进行说明:在该第六实施方式的氮化物类半导体激光元件220中,与上述第五实施方式不同,利用具有由(11-2-5)面构成的主表面的n型GaN基板261,在主表面上的基底层22上形成沿n型GaN基板261的[1-100]方向(图36的垂直于纸面的方向)延伸的裂纹42之后,再形成半导体激光元件层223。另外,n型GaN基板261是本发明的“基板”的一个例子。

在此,在第六实施方式中,如图36所示,半导体激光元件层223经由基底层22形成于n型GaN基板261的由(11-2-5)面构成的主表面上。此时,在半导体激光元件层223上形成有:光射出面220a,其沿与垂直于n型GaN基板261的主表面的方向[11-2-5]方向(C2方向)大致等同的方向延伸;倾斜面220c,其从光射出面220a的下部附近起,相对于[11-2-5]方向倾斜角度θ7(=约57°),并且沿发光层226的附近区域发出的激光的射出方向(A1方向)延伸;倾斜面220d,其经由端面220f而倾斜。另外,形成有倾斜面220e,该倾斜面220e从光射出面220a的上端部起,相对于n型GaN基板261的[11-2-5]方向倾斜角度θ7(=约57°),并且沿A2方向延伸。因此,如图36所示,倾斜面220c、220d和220e、和n型GaN基板261的主表面按照成锐角的方式来形成。另外,光射出面220a、倾斜面220c、220d和220e分别是本发明的“第一端面”的一个例子。另外,在半导体激光元件层223上形成有垂直于n型GaN基板261的主表面的光反射面220b。光反射面220b是本发明的“第二端面”的一个例子。

另外,第六实施方式的氮化物类半导体激光元件220的其他结构和制造工艺与上述第五实施方式同样。另外,第六实施方式的氮化物类半导体激光元件220的效果与上述第五实施方式同样。

(第七实施方式)

首先,参照图37对下述情况进行说明:在该第七实施方式的氮化物类半导体激光元件235中,与上述第五实施方式不同,利用具有由(11-2-2)面构成半极性面的主表面的n型GaN基板271,在主表面上的基底层22上形成沿n型GaN基板271的[1-100]方向(图37的垂直于纸面的方向)延伸的裂纹42之后,再形成半导体激光元件层223。另外,n型GaN基板271是本发明的“基板”的一个例子。

在此,在第七实施方式中,如图37所示,在n型GaN基板271的由(11-2-2)面构成的主表面上经由基底层22形成有与上述第五实施方式具有同样的层叠结构的半导体激光元件层223。此时,在半导体激光元件层223上形成有:光射出面235a,其沿与垂直于n型GaN基板271的主表面的方向([11-2-2]方向(C2方向))大致等同的方向延伸;倾斜面235c,其从光射出面235a的下部附近起,相对于[11-2-2]方向倾斜角度θ8(=约27°),并且沿发光层226的附近区域发出的激光的射出方向(A1方向)延伸;倾斜面235d,其经由端面235f而倾斜。另外,形成有倾斜面235e,该倾斜面235e从光射出面235a的上端部起,相对于n型GaN基板271的[11-2-2]方向倾斜角度θ8(=约27°),并且沿A2方向延伸。因此,如图37所示,倾斜面235c、235d和235e、和n型GaN基板271的主表面按照成锐角的方式来形成。另外,光射出面235a、倾斜面235c、235d和235e分别是本发明的“第一端面”的一个例子。

另外,在第七实施方式中,如图37所示,形成有光反射面235b,其沿与垂直于n型GaN基板271的主表面的方向([11-2-2]方向(C2方向))大致等同的方向延伸;倾斜面235g,其从光射出面235b的下部附近起,相对于[11-2-2]方向倾斜角度θ9(=约32°),并且沿A2方向延伸;倾斜面235i,其经由端面235h而倾斜。另外,形成有倾斜面235j,该倾斜面235j从光射出面235b的上端部起,相对于n型GaN基板271的[11-2-2]方向倾斜角度θ9(=约32°),并且沿A1方向延伸。另外,光反射面235b是本发明的“第二端面”的一个例子。另外,第七实施方式的氮化物类半导体激光元件235的其他结构与上述第一实施方式同样。

接着,参照图23和图37~图40对第七实施方式的氮化物类半导体激光元件235的制造工艺进行说明。

在第七实施方式中,通过与上述第五实施方式同样的制造工艺,在n型GaN基板271的由(11-2-2)面构成的主表面上依次形成基底层22和半导体激光元件层223。此时,如图38所示,形成由(11-22)面构成的刻面,该由(11-22)面构成的刻面以事先形成于基底层22的裂纹42的内侧面42c的上端部为起点,沿相对于n型GaN基板271的主表面倾斜角度θ8(=约27°)的方式延伸。另外,同时,半导体激光元件层223边形成以裂纹42的内侧面42d的上端部为起点、沿相对于n型GaN基板271的主表面倾斜角度θ9(=约32°)的方式延伸的由(000-1)面构成的刻面,边进行结晶生长。

接着,如图39所示,在半导体激光元件层223上形成有掩模层202和抗蚀层203之后,通过氢氟酸实现的湿式蚀刻,部分地除去掩模层202。另外,在露出刻面((11-22)面和(000-1)面)的部分,进行Cl2等实现的干式蚀刻。由此,如图39所示,在半导体激光元件层223上分别形成包含n型包覆层225的一部分和发光层226的光射出面235a和光反射面235b。另外,如图39所示,通过干式蚀刻,光射出面235a形成为大体上具有(11-25)面,并且光反射面235b形成为大体上具有(-1-12-5)面。

其后,通过氢氟酸实现的湿式蚀刻,从半导体激光元件层223上完全除去掩模层202和抗蚀层203。由此,在半导体激光元件层223的激光射出侧端面上形成有由(11-22)面构成的倾斜面235d和235e、和上述蚀刻形成的光射出面235a、倾斜面235c和端面235f。另外,在半导体激光元件层223的激光反射侧端面上形成有由(000-1)面构成的倾斜面235i和235j、和上述蚀刻形成的光反射面235b、倾斜面235g和端面235h。

接着,通过与上述第五实施方式同样的制造工艺,分别形成脊部201(参照图23)、电流区块层229(参照图23)、和p侧电极230。另外,在第七实施方式中,脊部201按照沿大致[11-25]方向(A1方向)延伸的方式形成。

此后,如图40所示,按照n型GaN基板271的厚度达到约100μm的方式,将n型GaN基板271的背面研磨后,利用真空蒸镀法,在n型GaN基板271的背面上按照与n型GaN基板271接触的方式形成n侧电极231。

而且,如图40所示,在位于裂纹42的大致正下方的n侧电极231的背面侧,通过激光划线或机械式划线,按照沿与n型GaN基板271的A方向正交的方向(图23的B方向)延伸的方式,形成直线状的线槽41。在该状态下,如图40所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板271的背面侧为支点附加荷重,由此将晶片在线槽41的位置(解理线1000)解理。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图37所示的第七实施方式的氮化物类半导体激光元件235。另外,第七实施方式的氮化物类半导体激光元件235的效果与上述第五实施方式同样。

(第八实施方式)

参照图16、图23和图41~图44对下述情况进行说明:在该第八实施方式的氮化物类半导体激光元件240中,与上述第五实施方式不同,在n型GaN基板281的由m面((1-100)面)构成的主表面上,利用蚀刻技术,形成沿[11-20]方向(图41的垂直于纸面的方向)延伸的槽部82之后,再形成半导体激光元件层223。另外,n型GaN基板281和槽部82分别是本发明的“基板”和“凹部”的一个例子。

在本发明的第八实施方式的氮化物类半导体激光元件240中,如图41所示,在n型GaN基板281上形成有与上述第五实施方式具有同样的层叠结构的半导体激光元件层223。另外,半导体激光元件层223的激光元件端部间(A方向)长度L3具有约1660μm,并且在[0001]方向即谐振器方向(A方向)上分别形成有相对于n型GaN基板281的主表面大致垂直的光射出面240a和光反射面240b。光射出面240a和光反射面240b分别是本发明的“第一端面”和“第二端面”的一个例子。

在此,在第八实施方式中,如图16所示,与上述第五实施方式的氮化物类半导体激光元件200的制造工艺不同,在n型GaN基板281的由m面(1-100)面构成的主表面上,利用蚀刻技术,形成在[0001]方向(A方向)上具有约10μm的宽度W1、并且具有约2μm深度、沿[11-20]方向(垂直于纸面的方向)延伸的槽部82。另外,槽部82在A方向上以约1570μm(=W1+L2)周期形成为条纹状。另外,此时,在槽部82形成相对于n型GaN基板281的(1-100)面大致垂直的由(0001)面构成的内侧面82c、和相对于n型GaN基板281的(1-100)面大致垂直的由(000-1)面构成的内侧面82d。另外,槽部82是本发明的“凹部”的一个例子。内侧面82c和内侧面82d分别是本发明的“凹部的一侧面”和“凹部的另一侧面”的一个例子。

其后,如图43所示,通过与第五实施方式同样的制造工艺,在n型GaN基板281上,将缓冲层224、n型包覆层225、发光层226、p型包覆层227和p型接触层228依次层叠,由此形成半导体激光元件层223。

此时,在第八实施方式中,如图42所示,形成以槽部82的由(0001)面构成的内侧面82c的上端部为起点、沿相对于n型GaN基板281的主表面倾斜角度θ1(=约62°)的方向延伸的由(1-101)面构成的刻面。另外,同时,半导体激光元件层223以槽部82的内侧面82d的上端部为起点,按照接着槽部82的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的端面((000-1)面),边进行结晶生长。由此,在半导体激光元件层223上形成由(000-1)面构成的光反射面240b。

另外,在第八实施方式中,通过与上述第五实施方式同样的蚀刻,如图43所示,半导体激光元件层223上形成沿[1-100]方向(C2方向)延伸并且包含n型包覆层225的一部分和发光层226的光射出面240a。另外,此时,如图43所示,形成有从n型包覆层225的上端部附近向n型GaN基板281侧倾斜延伸的倾斜面240c、和与光射出面240a大致平行的端面240f。由此,如图43所示,与上述第五实施方式同样,在半导体激光元件层223的激光射出侧端面上形成有由(1-101)面构成的倾斜面240d和240e、蚀刻加工形成的光射出面240a和倾斜面240c。另外,倾斜面240c、240d和240e分别是本发明的“第一端面”的一个例子。

而且,通过与上述第五实施方式同样的制造工艺,依次形成电流区块层229(参照图23)、p侧电极230和n侧电极231。而且,如图44所示,在n侧电极231的下面侧的与(000-1)半导体端面对应的位置、和希望形成规定的(0001)面的位置,通过激光划线或机械式划线,按照与n型GaN基板281的槽部82平行(图42的垂直于纸面的方向)地延伸的方式,形成直线状的线槽41。在该状态下,如图44所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板281的下面侧为支点附加荷重,由此将晶片在线槽41的位置(解理线1000)解理。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图41所示的第八实施方式的氮化物类半导体激光元件240。

在第八实施方式中,如上所述,在半导体激光元件层223上,在光射出面240a、和光射出面240a的附近设置有倾斜面240c和240d,该倾斜面240c和240d与n型GaN基板281的主表面(m面(1-100)面)成锐角,同时相对于与n型GaN基板281的主表面垂直的[1-100]方向倾斜角度θ1(=约62°)地延伸,由此半导体激光元件层223经由比发光层226附近的平面积大的平面积与n型GaN基板281侧连接,因此能够使向n型GaN基板281侧散热的路径的截面积(由倾斜面240c和240d、端面240f、n型包覆层225的主面((1-100)面)和将光射出面240a沿C1方向延长到n型包覆层225的主表面的假想面(虚线)包围的区域S(参照图41))增加其平面积增加的部分那么多。由此,即使是使氮化物类半导体激光元件240的输出增加的情况,光射出面240a附近的激光器射出光的发热也比经由光射出面240a更适当地经由形成有沿激光的射出方向延伸的倾斜面240c和240d的半导体激光元件层223内部,向n型GaN基板281侧散发。因此,激光器射出光造成的谐振器端面(光射出面240a)的过度发热得以抑制。由此,能够抑制谐振器端面(光射出面240a)随着半导体激光的高输出化而劣化。另外,通过抑制谐振器端面(光射出面240a)的劣化,能够实现氮化物类半导体激光元件240的长寿命化。

另外,第八实施方式的氮化物类半导体激光元件240的其他效果与上述第五实施方式同样。

(第八实施方式的变形例)

参照图45对下述情况进行说明:在该第八实施方式的变形例的氮化物类半导体激光元件245中,与上述第八实施方式不同,半导体激光元件层223形成于由n型GaN基板291的非极性面即a面((11-20)面)构成的主表面上。另外,n型GaN基板291是本发明的“基板”的一个例子。

在此,在第八实施方式的变形例中,如图45所示,在半导体激光元件层223上形成有倾斜面245c和245d,该倾斜面245c和245d从光射出面245a的下端部起,相对于与n型GaN基板291的主表面垂直的方向([11-20]方向(C2方向))倾斜角度θ3(=约58°),并且沿发光层226的附近区域发出的激光的射出方向(A1方向(向激光元件的外部远离光射出面245a的方向))延伸。另外,形成有倾斜面245e,该倾斜面245e从光射出面245a的上端部起,相对于与n型GaN基板291的主表面垂直的方向([11-20]方向(C2方向))倾斜角度θ3(=约58°),并且沿A2方向延伸。因此,如图45所示,倾斜面245c、245d和245e、和n型GaN基板291的主表面按照成锐角的方式来形成。另外,光射出面245a、倾斜面245c、245d和245e分别是本发明的“第一端面”的一个例子。

另外,在第八实施方式的变形例中,半导体激光元件层223的倾斜面245c从位于射出面245a的下部的后述的n型包覆层225向n型GaN基板291侧倾斜延伸,并且经由相对于n型GaN基板291的主表面大致垂直地延伸的端面245f连接于倾斜面245d。另外,半导体激光元件层223的倾斜面245d和245e由以槽部82的由(0001)面构成的内侧面82c的上端部为起点进行结晶生长的由(11-22)面构成的刻面构成。

另外,在第八实施方式的变形例中,半导体激光元件层223的光反射面245b由沿与n型GaN基板291的主表面垂直的方向[11-20]方向(C2方向)延伸、并且按照接着槽部82的由(000-1)面构成的内侧面82d的方式进行结晶生长的由(000-1)面构成的端面构成。另外,光反射面245b是本发明的“第二端面”的一个例子。

另外,在第八实施方式的变形例中,通过在n型GaN基板291的非极性面((11-20)面)上形成半导体激光元件层223,能够降低在半导体元件层(发光层226)上发生的压电场和自发极化等内部电场。由此进一步抑制包含谐振器端面(光射出面245a)附近的半导体激光元件层223(发光层226)的发热,因此能够实现氮化物类半导体激光元件245的长寿命化。

另外,第八实施方式的变形例的氮化物类半导体激光元件245的其他结构和制造工艺与上述第八实施方式同样。另外,第八实施方式的变形例的氮化物类半导体激光元件245的效果与上述第八实施方式同样。

(第九实施方式)

首先,参照图46对第九实施方式的发光二极管芯片300的结构进行说明。

该第九实施方式的发光二极管芯片300由以a面((11-20)面)为主表面的纤锌矿(wurtzite)结构的氮化物半导体构成。另外,发光二极管芯片300的形状俯视时(从发光二极管芯片300的上面侧看)具有正方形状、长方形状、菱形或平行四边形等形状。

另外,如图46所示,发光二极管芯片300在具有约100μm厚度的n型GaN基板311上形成有发光元件层312。另外,在发光元件层312上形成有:n型包覆层313,其具有约0.5μm厚度且由n型Al0.03Ga0.97N构成;发光层314,其具有约2nm厚度,且由层叠有由Ga0.7In0.3N构成的阱层(未图示)和由Ga0.9In0.1N构成的阻挡层(未图示)的MQW结构构成。另外,在发光层314上形成有p型包覆层315,该p型包覆层315具有约0.2μm厚度且由p型GaN构成且兼作p型接触层。另外,n型GaN基板311是本发明的“基板”的一个例子,发光元件层312、n型包覆层313、发光层314和p型包覆层315分别是本发明的“氮化物类半导体层”的一个例子。

在此,在第九实施方式中,从n型包覆层313到p型包覆层315,由发光元件层312的由(000-1)面构成的结晶生长面312a、和由(11-22)面构成的结晶生长面312b形成凹部320。另外,结晶生长面312a和结晶生长面312b分别是本发明的“第一侧面”和“第二侧面”的一个例子。另外,结晶生长面312a按照在后述的制造工艺中以接着事先形成于n型GaN基板311的主表面的槽部83的由(000-1)面构成的内侧面83a的方式、沿相对于n型GaN基板311的主表面大致垂直的方向([11-20]方向)延伸的方式而形成。另外,结晶生长面312b由以槽部83的内侧面83b为起点的倾斜面构成,按照相对于发光元件层312的上面(主表面)成钝角的方式来形成。另外,槽部83和内侧面83a分别是本发明的“凹部”和“凹部的一内侧面”的一个例子。另外,在图46中,在图示的关系上,只在图中的一部分槽部83记述有内侧面83a和内侧面83b的符号。

另外,在n型GaN基板311的下面上形成有n侧电极316。另外,在凹部320形成有相对于发光波长透明的SiO2等绝缘膜322,按照覆盖绝缘膜322和p型包覆层315的方式,形成有具有透光性的p侧电极317。

接着,参照图46和图47对第九实施方式的发光二极管芯片300的制造工艺进行说明。

首先,通过与上述第二实施方式同样的制造工艺,在n型GaN基板311的由a面((11-20)面)构成的主表面上形成在[0001]方向(A方向)上具有约5μm的宽度W1、并且具有约2μm深度且沿[1-100]方向(B方向)延伸的槽部83(参照图47)。另外,如图47所示,槽部83在A方向上以约50μm(=W2+L4(L4=约45μm))的周期形成为条纹状。

此时,在第九实施方式的制造工艺中,在槽部83形成相对于n型GaN基板311的(11-20)面大致垂直的由(000-1)面构成的内侧面83a、和相对于n型GaN基板311的(11-20)面大致垂直的由(0001)面构成的内侧面83b。另外,内侧面83b是本发明的“凹部的另一内侧面”的一个例子。

接着,利用MOCVD法,在具有槽部83的n型GaN基板311上,将n型包覆层313、发光层314和p型包覆层315等依次层叠,由此形成发光元件层312。

此时,在第九实施方式中,如图47所示,在n型GaN基板311上使发光元件层312生长的情况下,在沿[1-100]方向延伸的槽部83的由(000-1)面构成的内侧面83a上,发光元件层312按照接着槽部83的(000-1)面的方式,边形成沿[11-20]方向(C2方向)延伸的由(000-1)面构成的结晶生长面312a,边进行结晶生长。另外,在槽部83的与(000-1)面相对的(0001)面(内侧面83b)侧,发光元件层312边形成沿相对于[11-20]方向(C2方向)倾斜规定角度的方向延伸的由(11-22)面构成的结晶生长面(刻面)312b,边进行结晶生长。由此,结晶生长面312b按照相对于发光元件层312的上面(主表面)成钝角的方式而形成。

其后,如图46所示,按照将夹在发光元件层312的结晶生长面312a((000-1)面)和结晶生长面312b((11-22)面)中间的凹部320(包含槽部83的槽部83的上部区域)填埋的方式形成绝缘膜322。而且,在绝缘膜322和发光元件层312的上面上形成p侧电极317,并且在n型GaN基板311的下面上形成n侧电极316。这样就形成图46所示的第九实施方式的发光二极管芯片300。

在第九实施方式中,如上所述,包括在主表面上形成有槽部83的n型GaN基板311、和发光元件层312,该发光元件层312包含在n型GaN基板311的主表面上以槽部83的内侧面83a为起点而形成的由(000-1)面构成的结晶生长面312a、和以槽部83的内侧面83b为起点而形成的结晶生长面312b。由此,在发光元件层312上形成分别以槽部83的内侧面83a和83b为起点的结晶生长面312a和结晶生长面312b。即,在制造工艺上,与通过对层叠于无凹部等的平整的基板上的氮化物类半导体层进行蚀刻加工形成如上所述的结晶生长面312a或结晶生长面312b的情况不同,由于不需要蚀刻加工,因此能够抑制发光二极管芯片300的制造工艺复杂化。另外,发光元件层312的结晶生长面312a和结晶生长面312b通过干式蚀刻而形成,因此在制造工艺上,不易在发光层314等上产生损伤。由此,能够提高来自发光层314的光的输出效率。

另外,在第九实施方式中,包括在主表面上形成有槽部83的n型GaN基板311、和发光元件层312,该发光元件层312包含在n型GaN基板311的主表面上以槽部83的内侧面83a为起点而形成的由(000-1)面构成的结晶生长面312a、和以槽部83的内侧面83b为起点而形成的结晶生长面312b。由此,在发光元件层312在n型GaN基板311上进行结晶生长时,与生长层的上面(发光元件层312的主表面)生长的生长速度相比,分别形成以槽部83的内侧面83a为起点的结晶生长面312a和以槽部83的内侧面83b为起点的结晶生长面312b的生长速度慢,因此生长层的上面(主表面)边保持平整性边进行生长。由此,与未形成由上述结晶生长面312a和结晶生长面312b构成的端面时的发光元件层的生长层表面相比,能够进一步提高具有发光层314的发光元件层312的表面(上面)的平整性。

另外,在第九实施方式中,槽部83的内侧面83a按照由(000-1)面构成的方式来构成,由此在n型GaN基板311的主表面上形成具有由(000-1)面构成的结晶生长面312a的发光元件层312时,接着槽部83的内侧面83a的(000-1)面形成发光元件层312的(000-1)面,因此能够容易地在n型GaN基板311上形成由(000-1)面构成的结晶生长面312a。

另外,在第九实施方式中,将发光元件层312的结晶生长面312a和结晶生长面312b按照由发光元件层312的结晶生长面构成的方式来构成,由此能够在与发光元件层312的结晶生长同时分别形成上述结晶生长面312a和结晶生长面312b两种结晶生长面(端面)。

另外,在第九实施方式中,将结晶生长面312b按照由(11-22)面构成的方式来构成,由此与在n型GaN基板311上形成不符合(11-22)面的那种刻面的侧面(端面)时的发光元件层312的生长层的表面(主表面)相比,在n型GaN基板311上形成由(11-22)面的刻面(结晶生长面312b)时的生长层的表面(上面)能够按照可靠地具有平整性的方式来形成。另外,结晶生长面312b的生长速度比发光元件层312的主表面慢,因此通过结晶生长,能够容易地形成结晶生长面312b。

另外,在第九实施方式中,将基板构成为由GaN等氮化物类半导体构成的n型GaN基板311,由此利用发光元件层312的结晶生长,能够容易地在由氮化物类半导体构成的n型GaN基板311上形成具有由(000-1)面构成的结晶生长面312a和由(11-22)面构成的结晶生长面312b的发光元件层312。

另外,在第九实施方式中,将发光元件层312的结晶生长面312b按照相对于发光元件层312的主表面((11-20)面)成钝角的方式形成,由此发光元件层312的结晶生长面312a和结晶生长面312b相对的多个凹部320(包含n型GaN基板311的槽部83的槽部83的上部区域)按照从n型GaN基板311向发光元件层312的上面扩展的方式形成,因此能够容易地将来自发光层314的光不仅穿过发光元件层312的上面而且穿过相对于n型GaN基板311的主表面倾斜的结晶生长面312b而输出。由此,能够进一步提高发光二极管芯片300的发光效率。

(第十实施方式)

参照图48和图49对下述情况进行说明:在该第十实施方式的发光二极管芯片350的制造工艺中,与上述第九实施方式不同,在n型GaN基板311上形成由AlGaN构成的基底层355之后,再形成发光元件层342。另外,n型GaN基板311是本发明的“基底基板”的一个例子。

该第十实施方式的发光二极管芯片350由以(11-2-2)面为主表面的纤锌矿结构的氮化物半导体构成。另外,发光二极管芯片350的形状俯视时(从发光二极管芯片350的上面侧看)具有正方形状、长方形状、菱形或平行四边形等形状。

在此,在第十实施方式的发光二极管芯片350的制造工艺中,通过与上述第一实施方式同样的制造工艺,在具有约100μm厚度的n型GaN基板311上,使具有约3μm~4μm厚度的由Al0.05Ga0.95N构成的基底层355生长,并且在基底层355上形成裂纹43。在此,由于GaN和AlGaN的c轴的晶格常数之差比GaN和AlGaN的a轴的晶格常数之差大,因此裂纹43易在与基底层355的(0001)面和n型GaN基板311的主表面的(11-2-2)面平行的[1-100]方向(B方向)上形成。

另外,在俯视形成有裂纹43的n型GaN基板311的情况下,如图49所示,裂纹43形成为沿与n型GaN基板311的A方向大致正交的[1-100]方向(B方向)条纹状延伸。另外,裂纹43是本发明的“凹部”的一个例子。

其后,如图49所示,通过与上述第九实施方式同样的制造工艺,在基底层355上,将n型包覆层343、和发光层344、和p型包覆层345依次层叠,该n型包覆层343具有约0.5μm厚度且由n型GaN构成;该发光层344具有约2nm厚度,且由层叠有由Ga0.7In0.3N构成的阱层(未图示)和由Ga0.9In0.1N构成的阻挡层(未图示)的MQW结构构成;该p型包覆层345具有约0.2μm厚度且由p型GaN构成且兼作p型接触层,由此形成发光元件层342。另外,发光元件层342、n型包覆层343、发光层344和p型包覆层345分别是本发明的“氮化物类半导体层”的一个例子。

此时,在第十实施方式中,在n型GaN基板311上使发光元件层342生长的情况下,在沿[1-100]方向条纹状延伸的裂纹43的内侧面43a上,发光元件层312边形成沿相对于n型GaN基板311的[11-2-2]方向(C2方向)倾斜规定角度的方向延伸的由(000-1)面构成的结晶生长面342a,边进行结晶生长。另外,在裂纹43的与内侧面43a相对的内侧面43b侧,发光元件层342边形成沿相对于n型GaN基板311的[11-2-2]方向(C2方向)倾斜规定角度的方向延伸的由(11-22)面构成的结晶生长面342b,边进行结晶生长。另外,内侧面43a和内侧面43b分别是本发明的“凹部的一内侧面”和“凹部的另一内侧面”的一个例子,结晶生长面342a和结晶生长面342b分别是本发明的“第一侧面”和“第二侧面”的一个例子。由此,结晶生长面342a和342b分别按照相对于发光元件层342的上面(主表面)成钝角的方式形成。

其后,如图48所示,按照将夹在发光元件层342的由(000-1)面构成的结晶生长面342a和由(11-22)面构成的结晶生长面342b中间的凹部352(裂纹43的上部区域)填埋的方式,形成相对于发光波长透明的SiO2等绝缘膜322。而且,在绝缘膜322和发光元件层342的上面上形成p侧电极347,并且在n型GaN基板311的下面上形成n侧电极346。这样就形成图48所示的第十实施方式的发光二极管芯片350。

在第十实施方式中,如上所述,包括在基底层355上形成有裂纹43的n型GaN基板311、和发光元件层342,该发光元件层342包含在n型GaN基板311的主表面上以裂纹43的内侧面43a为起点而形成的由(000-1)面构成的结晶生长面342a、和以裂纹43的内侧面43b为起点而形成的结晶生长面342b。由此,在发光元件层342上形成分别以事先形成于n型GaN基板311的基底层355的裂纹43的内侧面43a和43b为起点的结晶生长面342a和结晶生长面342b。即,在制造工艺上,与通过对层叠于无凹部等的平整的基板上的氮化物类半导体层进行蚀刻加工形成如上所述的结晶生长面342a或结晶生长面342b的情况不同,由于不需要蚀刻加工,因此能够抑制发光二极管芯片350的制造工艺复杂化。另外,发光元件层342的结晶生长面342a和结晶生长面342b通过干式蚀刻而形成,因此在制造工艺上,不易在发光层344等上产生损伤。由此,能够提高来自发光层344的光的输出效率。

另外,在第十实施方式中,包括在基底层355上形成有裂纹43的n型GaN基板311、和发光元件层342,该发光元件层312包含在n型GaN基板311的主表面上以裂纹43的内侧面43a为起点而形成的由(000-1)面构成的结晶生长面342a、和以裂纹43的内侧面43b为起点而形成的结晶生长面342b。由此,在发光元件层342在n型GaN基板311上进行结晶生长时,与生长层的上面(发光元件层342的主表面)生长的生长速度相比,分别形成以裂纹43的内侧面43a为起点的结晶生长面342a和以裂纹43的内侧面43b为起点的结晶生长面342b的生长速度慢,因此生长层的上面(主表面)边保持平整性边进行生长。由此,与未形成由上述结晶生长面342a和结晶生长面342b构成的端面时的发光元件层的生长层表面相比,能够进一步提高具有发光层344的发光元件层342的表面(上面)的平整性。

另外,在第十实施方式中,在n型GaN基板311上形成由AlGaN构成的基底层355,并且按照n型GaN基板311的晶格常数c1、和基底层355的晶格常数c2具有c1>c2的关系的方式而构成,将发光元件层342的结晶生长面342a和结晶生长面342b分别以裂纹43的内侧面43a和43b为起点而形成,由此在n型GaN基板311上形成由AlGaN构成的基底层355时,由于基底层355的晶格常数c2比n型GaN基板311的晶格常数c1小(c1>c2),因此基底层355的厚度与n型GaN基板311的晶格常数c1一致,在基底层355的内部产生拉伸应力R。其结果是,在基底层355的厚度为规定以上的情况下,不耐该拉伸应力R而断开时就在基底层355上形成裂纹43。由此,能够容易地在基底层355上形成内侧面43a和43b,该内侧面43a和43b成为用于使发光元件层342的结晶生长面342a((000-1)面)和结晶生长面342b((11-22)面)分别在基底层355上进行结晶生长的基准。

另外,在第十实施方式中,将发光元件层342的结晶生长面342a((000-1)面)和结晶生长面342b((11-22)面)按照由发光元件层342的结晶生长面构成的方式来构成,由此能够容易地在与发光元件层342的结晶生长同时分别形成上述结晶生长面342a和结晶生长面342b两种平整的结晶生长面(端面)。

另外,在第十实施方式中,将发光元件层342的结晶生长面342a和342b按照相对于发光元件层342的主表面((11-2-2)面)成钝角的方式形成,由此发光元件层342的结晶生长面342a和结晶生长面342b相对的多个凹部352(包含n型GaN基板311的裂纹43的裂纹43的上部区域)按照从n型GaN基板311向发光元件层342的上面扩展的方式形成,因此能够容易地将来自发光层344的光不仅穿过发光元件层342的上面而且穿过相对于n型GaN基板311的主表面倾斜的结晶生长面342a和342b而输出。由此,能够进一步提高发光二极管芯片350的发光效率。另外,第十实施方式的其他效果与上述第九实施方式同样。

(第十一实施方式)

参照图50~图52对下述情况进行说明:在该第十一实施方式的发光二极管芯片360的制造工艺中,与上述第十实施方式不同,在n型GaN基板311的基底层355上形成通过形成虚线状的线痕361而控制了裂纹的发生位置的裂纹362。另外,n型GaN基板311是本发明的“基底基板”的一个例子,裂纹362是本发明的“凹部”的一个例子。

该第十一实施方式的发光发光二极管芯片360由以(1-10-2)面为主表面的纤锌矿结构的氮化物半导体构成。另外,发光发光二极管芯片360的形状俯视时(从发光发光二极管芯片360的上面侧看)具有正方形状、长方形状、菱形或平行四边形等形状。

在此,在第十一实施方式的发光发光二极管芯片360的制造工艺中,在n型GaN基板311(参照图50)上,使具有比上述第十实施方式的厚度(约3μm~4μm)薄的临界膜厚程度的厚度的由AlGaN构成的基底层355生长。此时,在基底层355上通过与第十实施方式同样的作用在内部发生拉伸应力R。在此,临界膜厚的意思是指,在将具有互不相同的晶格常数的半导体层层叠时,晶格常数差引起的裂纹不发生于半导体层时的半导体层的最小厚度。

此后,如图51所示,利用激光或金刚石笔等,在基底层355上,在与A方向大致正交的[11-20]方向(B方向)上,以约50μm的间隔形成虚线状的线痕361。另外,线痕361在A方向上以间隔L4的间距形成多条。由此,如图52所示,在基底层355上,裂纹以虚线状的线痕361为起点在未形成有线痕361的基底层355的区域行进。其结果是,形成将基底层355在B方向上断开的大致直线状的裂纹362(参照图52)。

另外,此时,线痕361也沿深度方向(图52的垂直于纸面的方向)进行分割。由此,在裂纹362内形成到达基底层355和n型GaN基板311的界面附近的内侧面362a(虚线所示)。另外,内侧面362a是本发明的“凹部的一内侧面”的一个例子。

其后,通过与上述第十实施方式同样的制造工艺,在基底层355上,将n型包覆层343、和发光层344、和p型包覆层345依次层叠,该发光层344具有约2nm厚度,且由层叠有由Ga0.7In0.3N构成的阱层(未图示)和由Ga0.9In0.1N构成的阻挡层(未图示)的MQW结构构成,由此形成发光元件层342。

此时,在n型GaN基板311上的发光元件层342上,形成沿相对于n型GaN基板311的[1-10-2]方向(C2方向)倾斜规定角度的方向延伸的由(000-1)面构成的结晶生长面342c、和沿相对于n型GaN基板311的[1-10-2]方向(C2方向)倾斜规定角度的方向延伸的由(1-101)面构成的结晶生长面342d。另外,结晶生长面342c和结晶生长面342d分别是本发明的“第一侧面”和“第二侧面”的一个例子。

另外,第十一实施方式的其他制造工艺与上述第十实施方式同样。这样就形成图50所示的第十一实施方式的发光发光二极管芯片360。

在第十一实施方式的制造工艺中,如上所述,包括如下工序:在裂纹362形成时,在n型GaN基板311上将基底层355形成为临界膜厚程度的厚度之后,将相对于基底层355沿[11-20]方向(B方向)延伸的多条虚线状(约50μm的间隔)的线痕361在A方向上以间隔L4的间距而形成。由此,在基底层355上形成以虚线状的线痕361为起点平行于B方向地延伸、且沿A方向等间隔的裂纹362。即,与如上述第十实施方式那样利用自发形成的裂纹使半导体层进行层叠的情况相比,能够更容易地形成发光面积齐备的发光发光二极管芯片360(参照图50)。另外,第十一实施方式的其他效果与上述第十实施方式同样。

(第十二实施方式)

参照图10和图53对下述情况进行说明:在该第十二实施方式的发光二极管芯片370的制造工艺中,与上述第九实施方式不同,在具有由m面((1-100)面)构成的主表面的n型GaN基板371上形成由AlGaN构成的基底层355之后,再形成发光元件层312。另外,n型GaN基板371是本发明的“基底基板”的一个例子。

该第十二实施方式的发光二极管芯片370由以m面((1-100)面)为主表面的纤锌矿结构的氮化物半导体构成。另外,发光二极管芯片370的形状俯视时(从发光二极管芯片370的上面侧看)具有正方形状、长方形状、菱形或平行四边形等形状。

在此,在第十二实施方式的发光二极管芯片370的制造工艺中,如图61所示,在具有约100μm厚度的n型GaN基板21上,使具有约3μm~约4μm厚度的由Al0.05Ga0.95N构成的基底层355生长。此时,与上述第十实施方式同样,n型GaN基板371和基底层355的晶格常数差引起的裂纹43形成于基底层355。

其后,通过与上述第九实施方式同样的制造工艺,在基底层355上,将n型包覆层313、和发光层314、和p型包覆层315依次层叠,该n型包覆层313具有约0.5μm厚度且由n型Al0.03Ga0.97N构成;该发光层314具有约2nm厚度,且由层叠有由Ga0.7In0.3N构成的阱层(未图示)和由Ga0.9In0.1N构成的阻挡层(未图示)的MQW结构构成;该p型包覆层315具有约0.2μm厚度且由p型GaN构成且兼作p型接触层,由此形成发光元件层312。

此时,在第十二实施方式中,与图10所示的结晶生长的情况同样,在n型GaN基板371上使发光元件层312生长的情况下,在沿[11-20]方向(B方向)延伸的裂纹43的由(000-1)面构成的内侧面43a上,发光元件层312按照接着裂纹43的(000-1)面的方式,边形成沿[1-100]方向(C2方向)延伸的由(000-1)面构成的结晶生长面312c,边进行结晶生长。另外,在裂纹43的与(000-1)面相对的(0001)面(内侧面43b)侧,发光元件层312边形成沿相对于[1-100]方向(C2方向)倾斜规定角度的方向延伸的由(1-101)面构成的结晶生长面(刻面)312d,边进行结晶生长。由此,结晶生长面312d按照相对于发光元件层312的上面(主表面)成钝角的方式形成。另外,结晶生长面312c和结晶生长面312d分别是本发明的“第一侧面”和“第二侧面”的一个例子。

另外,在第十二实施方式中,也按照由发光元件层312的结晶生长面312c((000-1)面)和结晶生长面312b((1-101)面)夹持的凹部320(包含裂纹43的裂纹43的上部区域)填埋的方式,形成相对于发光波长透明的SiO2等绝缘膜322。

另外,第十二实施方式的其他制造工艺与上述第九实施方式同样。这样就形成图53所示的第十二实施方式的发光二极管芯片370。另外,第十二实施方式的发光二极管芯片370的效果与上述第一和第十实施方式同样。

(第十三实施方式)

参照图54对下述情况进行说明:在该第十三实施方式的发光二极管芯片380的制造工艺中,与上述第九实施方式不同,在具有由m面((1-100)面)构成的主表面的n型4H-SiC基板391上形成形成发光元件层392。另外,n型4H-SiC基板391和发光元件层392是本发明的“基板”和“氮化物类半导体层”的一个例子。

该第十三实施方式的发光二极管芯片380由以m面((1-100)面)为主表面的纤锌矿结构的氮化物半导体构成。另外,发光二极管芯片380的形状俯视时(从发光二极管芯片380的上面侧看)具有正方形状、长方形状、菱形或平行四边形等形状。

另外,如图54所示,发光二极管芯片380在具有约100μm厚度的n型4H-SiC基板391上形成有发光元件层392。另外,在发光元件层392上形成有:n型包覆层393,其具有约0.5μm厚度且由n型Al0.03Ga0.97N构成;发光层394,其具有约2nm厚度,且层叠有由Ga0.7In0.3N构成的阱层(未图示)和由Ga0.9In0.1N构成的阻挡层(未图示)。另外,发光层394上形成有p型包覆层395,该p型包覆层395具有约0.2μm厚度且由p型GaN构成且兼作p型接触层。另外,n型包覆层393、发光层394和p型包覆层395分别是本发明的“氮化物类半导体层”的一个例子。

在此,在第十三实施方式中,从n型包覆层393到p型包覆层395,通过发光元件层392的由(000-1)面构成的结晶生长面392a、和由(1-101)面构成的结晶生长面392b形成凹部320。另外,结晶生长面392a和结晶生长面392b分别是本发明的“第一侧面”和“第二侧面”的一个例子。另外,结晶生长面392a按照在制造工艺中以接着事先形成于n型4H-SiC基板391的主表面的槽部84的由(000-1)面构成的内侧面84a的方式、沿相对于n型4H-SiC基板391的主表面大致垂直的方向([1-100]方向)延伸的方式而形成。另外,结晶生长面392b由以槽部84的内侧面84b为起点的倾斜面构成,按照相对于发光元件层392的上面(主表面)成钝角的方式而形成。另外,槽部84、内侧面84a和内侧面84b分别是本发明的“凹部”、“凹部的一内侧面”和“凹部的另一内侧面”的一个例子。另外,在图54中,在图示的关系上,只在图中的一部分槽部84记述有内侧面84a和内侧面84b的符号。

另外,在n型4H-SiC基板391的下面上形成有n侧电极316。另外,在凹部320形成有绝缘膜322,按照覆盖相对于发光波长透明的SiO2等绝缘膜322和p型包覆层395的方式,形成有具有透光性的p侧电极317。

另外,第十三实施方式的发光二极管芯片380制造工艺与上述第九实施方式同样。另外,第十三实施方式的效果也与上述第九实施方式同样。

(第十四实施方式)

参照图55和图56对利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的结构进行说明。

在利用该第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400中,如图55所示,在谐振器方向(A方向)的一端部(光射出面400a侧的端部)形成有台阶部421a。另外,在具有约100μm厚度的n型GaN基板421上形成有具有约3.1μm厚度的半导体激光元件层402。另外,如图56所示,半导体激光元件层402的谐振器长具有约1560μm,并且在[0001]方向即谐振器方向(A方向)的两端部分别形成有相对于n型GaN基板421的主表面大致垂直的光射出面400a和光反射面400b。另外,n型GaN基板421和半导体激光元件层402分别为本发明的“基板”和“氮化物类半导体层”的一个例子,光射出面400a为本发明的“由(000-1)面构成的端面”的一个例子。

在此,在第十四实施方式中,半导体激光元件层402形成于n型GaN基板421的非极性面即由m面((1-100)面)构成的主表面上。另外,n型GaN基板421的台阶部421a具有与n型GaN基板421的主表面大致垂直的由(000-1)面的刻面(生长面)构成的端面421b。而且,如图56所示,半导体激光元件层402的光射出面400a由按照接着n型GaN基板421的端面421b的方式进行结晶生长的由(000-1)面构成的结晶面构成。另外,半导体激光元件层402的光反射面400b由垂直于[0001]方向(图56的A1方向)的端面即c面((0001)面)构成。另外,端面421b是本发明的“(000-1)刻面”的一个例子。

另外,如图55所示,半导体激光元件层402从距n型GaN基板421的上面近的一侧起依次包含:n型包覆层403,其具有约3μm的厚度且由AlGaN构成;活性层404,其具有约75nm的厚度,并且交替地层叠有由InGaN构成的三层量子阱层和GaN构成的三层阻挡层;p型包覆层405,其具有约0.5μm的厚度且由AlGaN构成。n型包覆层403、活性层404,量子阱层、阻挡层和p型包覆层405分别是本发明的“氮化物类半导体层”的一个例子。

另外,如图55所示,在p型包覆层405的上面上的规定区域形成有具有约200nm的厚度且由SiO2构成的电流区块层406。

另外,在p型包覆层405的上面上的未形成有电流区块层406的区域(图55的B方向的中央部附近)形成有p侧电极407,该p侧电极407从距p型接触层405的上面近的一侧起依次由具有约5nm厚度的Pt层、和具有约100nm厚度的Pd层、和具有约150nm厚度的Au层构成。另外,p侧电极407以覆盖电流区块层406的上面上的方式形成。另外,也可以在p型包覆层405和p侧电极407之间形成有优选禁带宽度比p型包覆层405小的接触层(未图示)。

另外,如图55所示,在n型GaN基板421的下面上形成有n侧电极408,该n侧电极408从距n型GaN基板421近的一侧起依次由具有约10nm厚度的Al层、和具有约20nm厚度的Pt层、和具有约300nm厚度的Au层构成。

接着,参照图16和图55~图57对利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺进行说明。

首先,如图57所示,利用蚀刻技术,在n型GaN基板421的由(1-100)面构成的主表面上,形成在[0001]方向(A方向)上具有约40μm的宽度W1(参照图16)、并且具有约2μm深度、沿[11-20]方向(B方向)延伸的槽部85。另外,槽部85在A方向(参照图16)上以约1600μm(=W1+L2)的周期形成为条纹状。

在此,在第十四实施方式中,如图57所示,在槽部85形成相对于n型GaN基板421的(1-100)面大致垂直的由(000-1)面的刻面构成的内侧面85a、和相对于n型GaN基板421的(1-100)面大致垂直的由(0001)面构成的内侧面85b。另外,内侧面85a是本发明的“(000-1)刻面”的一个例子。

接着,利用MOCVD法,在具有槽部85的n型GaN基板421上,将n型包覆层403、活性层404和p型包覆层405等依次层叠,由此形成半导体激光元件层402。

此时,在第十四实施方式中,如图57所示,在n型GaN基板421上使半导体激光元件层402进行生长的情况下,在沿B方向延伸的槽部85的内侧面85a上,半导体激光元件层402按照接着内侧面85a的方式,边形成沿[1-100]方向(C2方向)延伸的(000-1)面,边进行结晶生长。由此,半导体激光元件层402的(000-1)面形成为氮化物类半导体激光元件400的一对谐振器端面中的光射出面400a。另外,在槽部85的与(000-1)面相对的(0001)面(内侧面85b)侧,半导体激光元件层402边形成沿相对于[1-100]方向(C2方向)倾斜规定角度的方向延伸的由(1-101)面构成的刻面,边进行结晶生长。

其后,如图55所示,在p型包覆层405的上面上通过光刻形成抗蚀剂图案后,以其抗蚀剂图案为掩模,进行干式蚀刻等,由此形成由SiO2构成的电流区块层406。另外,如图55和图56所示,利用真空蒸镀法,在电流区块层406上和未形成有电流区块层406的p型包覆层405上,形成p侧电极407。另外,图56表示形成有电流区块层406的位置的沿着半导体激光元件的谐振器方向(A方向)的剖面结构。

此后,如图57所示,按照使n型GaN基板421的厚度达到约100μm的方式将n型GaN基板421的下面研磨后,利用真空蒸镀法,在n型GaN基板421的下面上形成n侧电极408。

其后,在n侧电极408的下面侧的与(000-1)半导体端面对应的位置、和规定的形成有(0001)面的位置,通过激光划线或机械式划线,按照沿与n型GaN基板421的槽部85平行(图55的B方向)的方向延伸的方式,形成直线状的线槽41。在该状态下,如图57所示,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板421的下面侧为支点附加荷重,由此将晶片在线槽41的位置解理。由此,半导体激光元件层402的(0001)面形成为氮化物类半导体激光元件400的一对谐振器端面中的光反射面400b。另外,与槽部85对应的区域的n型GaN基板421沿将槽部85和线槽41连接的解理线1000(虚线)被分割。另外,如图56所示,n型GaN基板421的槽部85在元件分割后成为形成于光射出面400a的下部的台阶部421a(端面421b)。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图55所示的第十四实施方式的氮化物类半导体激光元件400。

在利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺中,如上所述,包括与n型GaN基板421的由(1-100)面构成的主表面大致垂直地形成槽部85(由(000-1)面的刻面构成的内侧面85a)的工序、和在n型GaN基板421的(1-100)面上形成半导体激光元件层402的工序,由此在n型GaN基板421上形成半导体激光元件402时,按照接着事先与n型GaN基板421的主表面大致垂直地形成的(000-1)面的刻面(内侧面85a)的方式,能够形成具有由(000-1)面构成的光射出面400a的半导体激光元件层402。由此,不利用解理工序就能够形成具有光射出面400a的半导体激光元件层402。另外,通过具备上述工序,与不形成由(000-1)面构成的的刻面时的半导体层的生长层表面相比,能够提高半导体激光元件层402的表面的平整性。

另外,在利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺中,包含形成半导体激光元件层402的工序、和在与形成于n型GaN基板421的(000-1)面的刻面(内侧面85a)对应的区域形成具有由(000-1)面构成的端面的半导体激光元件层402的工序,由此在主表面为m面((1-100)面)的n型GaN基板421上形成半导体激光元件402的情况下,利用半导体激光元件402的结晶生长,能够在发光元件层上容易地形成用于提高半导体激光器的增益的一对谐振器端面构成((0001)面和(000-1)面的组合)中的(000-1)面侧的端面(光射出面400a)。

另外,在利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺中,通过由GaN构成的氮化物类半导体构成n型GaN基板421,能够在形成有由(000-1)面的刻面构成的内侧面85a(端面421b)的n型GaN基板421上,利用半导体层的结晶生长形成,容易地形成具有由(000-1)面构成的光射出面400a的半导体激光元件层402。

另外,在利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺中,以n型GaN基板421的主表面为m面((1-100)面),由此在由(1-100)面构成的非极性面上形成半导体激光元件层402,因此能够进一步降低在半导体激光元件层402上发生的压电场。由此,能够形成提高了激光的发光效率的氮化物类半导体激光器。

另外,在利用第十四实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件400的制造工艺中,与n型GaN基板421的主表面大致垂直地形成(000-1)面的工序包含:通过蚀刻形成俯视时在n型GaN基板421的主表面上沿B方向条纹状延伸的槽部85从而形成由(000-1)面构成的内侧面85a的工序,由此形成于n型GaN基板421上的半导体激光元件层402的由(000-1)面构成的光射出面400a按照如下方式形成:沿着在n型GaN基板421的B方向上条纹状延伸的内侧面85a((000-1)面的刻面),在B方向上也条纹状延伸。由此,能够得到在晶片内由(000-1)面构成的光射出面400a按照沿B方向(参照图55)平滑地延伸的方式而形成的氮化物类半导体激光元件400。

(第十五实施方式)

参照图58和图59对下述情况进行说明:在利用该第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件450的制造工艺中,与上述第十四实施方式不同,在n型GaN基板451上形成基底层422之后,再形成半导体激光元件层402。另外,n型GaN基板451是本发明的“基底基板”的一个例子。

在利用该第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件450中,如图58所示,在谐振器方向(A方向)的一端部(光射出面450a侧的端部)形成有台阶部451a。另外,在具有由(1-100)面构成的主表面的n型GaN基板451上形成有具有与第十四实施方式同样的结构的半导体激光元件层402。另外,半导体激光元件层402的谐振器长具有约1560μm,并且在[0001]方向即谐振器方向(A方向)的两端部分别形成有相对于n型GaN基板451的主表面大致垂直的光射出面450a和光反射面450b。光射出面450a为本发明的“由(000-1)面构成的端面”的一个例子。

在此,在第十五实施方式中,如图58所示,与上述第十四实施方式的氮化物类半导体激光元件400的制造工艺不同,在n型GaN基板451和半导体激光元件层402之间形成基底层422。具体而言,如图59所示,利用MOVCD法,在n型GaN基板451上,使具有约3μm~约4μm厚度且由GaN构成的基底层422生长,由此在基底层422上形成裂纹45。

另外,在第十五实施方式中,在基底层422上形成裂纹45时,在裂纹45内形成由AlGaN层的(000-1)面的刻面构成、且到达n型GaN基板451的上面的(1-100)面的内侧面45a。该内侧面45a形成为相对于n型GaN基板451的由(1-100)面构成的主表面大致垂直。另外,内侧面45a是本发明的“裂纹的一个面”和“(000-1)刻面”的一个例子。

其后,如图59所示,通过与第十四实施方式同样的制造工艺,在基底层422上,将n型包覆层403、活性层404和p型包覆层405等依次层叠,由此形成半导体激光元件层402。

在此,在第十五实施方式的中,如图59所示,在基底层422上使半导体激光元件层402生长的情况下,在沿B方向条纹状延伸的裂纹45的由(000-1)面的刻面构成的内侧面45a上,半导体激光元件层402按照接着内侧面45a的方式,边形成沿[1-100]方向(C2方向)延伸的(000-1)面,边进行结晶生长。由此,半导体激光元件层402的(000-1)面形成为氮化物类半导体激光元件450的一对谐振器端面中的光射出面450a。另外,在裂纹45的与内侧面45a相对的内侧面45b侧,半导体激光元件层402边形成沿相对于[1-100]方向(C2方向)倾斜规定角度的方向延伸的由(1-101)面构成的刻面,边进行结晶生长。

而且,通过与第十四实施方式同样的制造工艺,依次形成电流区块层406、p侧电极407和n侧电极408。而且,如图59所示,在n侧电极408的下面侧的与(000-1)半导体端面对应的位置、和规定的形成有(0001)面的位置,通过激光划线或机械式划线,按照沿与n型GaN基板451的裂纹45平行地延伸的方式,形成直线状的线槽41。在该状态下,按照晶片的表面侧(上侧)裂开的方式,以n型GaN基板451的下面侧为支点附加荷重,由此将晶片在线槽41的位置解理。由此,半导体激光元件层402的(0001)面形成为氮化物类半导体激光元件450的一对谐振器端面中的光反射面450b。另外,与裂纹45对应的区域的n型GaN基板451沿将裂纹45和线槽41连接的解理线1000被分割。另外,如图58所示,n型GaN基板451的裂纹45在元件分割后成为形成于光射出面450a的下部的台阶部451a(端面451b)。

此后,沿谐振器方向(A方向)将元件分割而芯片化,由此形成图58所示的第十五实施方式的氮化物类半导体激光元件450。

在利用第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件450的制造工艺中,如上所述,在n型GaN基板451上包含基底层422,并且与n型GaN基板451的由(1-100)面构成的主表面大致垂直地形成(000-1)面的刻面的工序包含:在基底层422上形成随着晶格常数差而形成的裂纹45(由(000-1)面构成的内侧面45a)的工序,由此在n型GaN基板451的主表面上形成半导体激光元件层402时,利用形成于基底层422的裂纹45的内侧面45a((000-1)面的刻面),按照接着内侧面45a的方式,能够容易地形成具有由(000-1)面构成的光射出面450a的半导体激光元件层402。

另外,在利用第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件450的制造工艺中,基底层422包含AlGaN层,并且在设n型GaN基板451的[0001]方向的晶格常数和基底层422的[0001]方向的晶格常数分别为c1和c2的情况下,具有c1>c2的关系,通过按照上述方式来构成,则在n型GaN基板451上形成由AlGaN构成的基底层422时,由于基底层422的[0001]方向的晶格常数c2比n型GaN基板451的[0001]方向的晶格常数c1小(c1>c2),因此基底层422的厚度即将与n型GaN基板451侧的晶格常数c1一致时就在基底层422的内部产生拉伸应力R。其结果是,在基底层422的厚度为规定以上的情况下,不耐该拉伸应力R而断开时就在基底层上沿(000-1)面形成裂纹45。由此,能够容易地在基底层422上形成内侧面45a((000-1)面的刻面),该内侧面45a成为用于在基底层422上形成发光元件层402的光射出面450a的基准。

另外,在利用第十五实施方式的氮化物类半导体层的形成方法形成的氮化物类半导体激光元件450的制造工艺中,与n型GaN基板451的主表面大致垂直地形成(000-1)面的刻面的工序包含:在基底层422上形成与(0001)面(该(0001)面与n型GaN基板451的主表面大致垂直)实质上平行地形成的由(000-1)面构成的内侧面45a的工序,由此在n型GaN基板451上形成半导体激光元件层402时,按照接着因晶格常数差而形成于基底层422的(000-1)面的刻面(内侧面45a)的方式,能够容易地形成具有(000-1)面的光射出面450a的半导体激光元件402。另外,第十五实施方式的其他效果与上述第十四实施方式同样。

另外,应认为本次公开的实施方式在所有方面都只是举例说明而已,不具有局限性。本发明的范围不限于上述实施方式的说明,而是通过权利要求书来表示,还包含在与权利要求书均等的意思和范围内的全部的变更。

例如,在上述第一~第八实施方式的氮化物类半导体激光元件中,对由AlGaN和InGaN等氮化物类半导体层形成半导体激光元件层23(223)的例子进行了表示,但本发明不局限于此,也可以由AlN、InN、BN、TlN和由它们的混合晶体构成的纤锌矿结构的氮化物类半导体层形成半导体激光元件层23(223)。

另外,在上述第九~第十三实施方式的发光二极管芯片中,对由AlGaN和InGaN等氮化物类半导体层形成发光元件层(发光元件层312等)的例子进行了表示,但本发明不局限于此,也可以由AlN、InN、BN、TlN和由它们的混合晶体构成的纤锌矿结构的氮化物类半导体层形成发光元件层。

另外,在上述第一实施方式、上述第一实施方式的变形例和上述第三~第八实施方式的氮化物类半导体激光元件中,对作为基板使用由GaN构成的n型GaN基板、并且在n型GaN基板上形成有由AlGaN构成的基底层的例子进行了表示,但本发明不局限于此,作为基板,也可以使用InGaN基板,并且在InGaN基板上也可以形成有由GaN或AlGaN构成的基底层。

另外,在上述第十~第十二实施方式的发光二极管芯片中,对作为基底基板使用n型GaN基板、并且在n型GaN基板上形成有由AlGaN构成的基底层的例子进行了表示,但本发明不局限于此,作为基板,也可以使用InGaN基板,并且在InGaN基板上也可以形成有由GaN或AlGaN构成的基底层。

另外,在上述第一~第四实施方式的氮化物类半导体激光元件中,对作为基板使用GaN基板的例子进行了表示,但本发明不局限于此,也可以使用例如:事先生长有以a面((11-20)面)为主表面的氮化物类半导体的r面((1-102)面)蓝宝石基板、和事先生长有以a面((11-20)面)或m面((1-100)面)为主表面的氮化物类半导体的a面SiC基板或m面SiC基板等。另外,也可以使用事先生长有上述非极性氮化物类半导体的LiAlO2基板或LiGaO2基板等。

另外,在上述第九~第十三实施方式的发光二极管芯片中,对作为基板使用GaN基板的例子进行了表示,但本发明不局限于此,也可以使用例如:事先生长有以a面((11-20)面)为主表面的氮化物类半导体的r面((1-102)面)蓝宝石基板、和事先生长有以a面((11-20)面)或m面((1-100)面)为主表面的氮化物类半导体的a面SiC基板或m面SiC基板等。另外,也可以使用事先生长有上述非极性氮化物类半导体的LiAlO2基板或LiGaO2基板等。

另外,在上述第一实施方式和上述第一实施方式的变形例的氮化物类半导体激光元件的制造工艺中,对利用了在基底层上利用n型GaN基板和基底层的晶格常数差而自发地形成裂纹的工艺的例子进行了表示,但本发明不局限于此,也可以只在基底层22的B方向(参照图6)的两端部(与n型GaN基板21的B方向的端部对应的区域)形成线痕。即使是如此构成,也能够将以两端部的线痕为起点沿B方向延伸的裂纹导入。

另外,在上述第十和第十二实施方式的发光二极管芯片中,对利用了在基底层上利用n型GaN基板和基底层的晶格常数差而自发地形成裂纹的工艺的例子进行了表示,但本发明不局限于此,也可以只在基底层355的B方向的两端部(与n型GaN基板311的B方向的端部对应的区域)形成线痕。即使是如此构成,也能够将以两端部的线痕为起点沿B方向延伸的裂纹导入。

另外,在上述第十一实施方式的发光二极管芯片中,对在基底层355上将裂纹导入用的线痕361形成为虚线状(约50μm的间隔)的例子进行了表示,但本发明不局限于此,也可以在基底层355的B方向的两端部(与n型GaN基板21的端部对应的区域)形成线痕。即使是如此构成,也能够将以两端部的线痕为起点沿B方向延伸的裂纹导入。

另外,在上述第三实施方式中,对通过在具有由m面((1-100)面)构成的主表面的n型GaN基板上形成半导体激光元件层而形成氮化物类半导体激光元件100的例子进行了表示,但本发明不局限于此,也可以在具有由a面((11-20)面)构成的主表面的n型GaN基板上形成半导体激光元件层。在这种情况下,使激光在PD(光传感器)上反射的反射面由(11-22)面构成。因此,通过将氮化物类半导体激光元件固定于具有倾斜约26°(相当于图18的角度θ4)的主表面的监测用PD内装辅助底座,可以使射出方向变化为相对于PD(光传感器)实质上垂直的方向而射出。

另外,在上述第四实施方式中,对通过在具有由m面((1-100)面)构成的主表面的n型GaN基板上形成半导体激光元件层而形成二维面发光元件的例子进行了表示,但本发明不局限于此,也可以在具有由a面((11-20)面)构成的主表面的n型GaN基板上形成半导体激光元件层。在这种情况下,使激光向外部反射的反射面由(11-22)面构成。因此,通过将二维面发光元件固定于具有倾斜约26°(相当于图22的角度θ6)的倾斜面的块部,可以使射出方向变化为相对于块部的上面实质上垂直的方向而射出。

另外,在上述第五~第八、第十四和第十五实施方式的氮化物类半导体激光元件中,对形成在平整的活性层上形成有具有脊部的上部包覆层且将电介质的区块层形成于脊部侧面的脊波导型半导体激光器的例子进行了表示,但本发明不局限于此,也可以形成具有半导体区块层的脊波导型半导体激光器、和隐埋异质结构(BH)的半导体激光器、和在平整的上部包覆层上形成有具有条纹状开口部的电流区块层的增益波导型半导体激光器。

另外,在上述第六实施方式中,对通过在具有由(11-2-5)面构成的主表面的n型GaN基板251上形成半导体激光元件层223而形成氮化物类半导体激光元件220的例子进行了表示,但本发明不局限于此,也可以在具有由(1-10-4)面构成的主表面的n型GaN基板上形成半导体激光元件层。在这种情况下,形成于光射出侧的谐振器端面附近的倾斜面成为随着半导体激光元件层形成时的结晶生长而形成的由(000-1)面构成的刻面。另外,在这种情况下,光反射面由相对于n型GaN基板的主表面大致垂直的由(1-101)面构成的结晶生长面形成。另外,倾斜面(刻面)的倾斜角度相对于与n型GaN基板的主表面垂直的方向([1-10-4]方向)具有约65°。

另外,在上述第七实施方式中,对通过在具有由(11-2-2)面构成的主表面的n型GaN基板271上形成半导体激光元件层223而形成氮化物类半导体激光元件235的例子进行了表示,但本发明不局限于此,也可以在具有由(1-10-1)面构成的主表面的n型GaN基板上形成半导体激光元件层。在这种情况下,形成于光射出侧的谐振器端面附近的倾斜面成为随着半导体激光元件层形成时的结晶生长而形成的由(1-101)面构成的刻面。形成于光反射面侧的倾斜面成为由(000-1)面构成的刻面。另外,倾斜面的倾斜角度相对于与n型GaN基板的主表面垂直的方向([1-10-1]方向)分别为:光射出面侧具有约34°、并且光反射面侧具有约28°。

另外,在上述第七实施方式中,对以相对于与n型GaN基板的主表面垂直的方向([11-2-2]方向)倾斜角度小的一侧(角度θ8=约27°)的倾斜面235d和235e为光射出面235a侧、并且在相对于[11-2-2]方向倾斜角度相对地比倾斜面235d和235e大的一侧(角度θ9=约32°)的倾斜面235i和235j上形成有光反射面235b的例子进行了表示,但本发明不局限于此,也可以构成为:以倾斜面235d和235e的一侧的谐振器端面为光反射面,并且以倾斜面235i和235j侧的谐振器端面为光射出面(使倾斜的角度关系和谐振器端面的关系与上述相反)。根据如此构成,由于光射出面侧的倾斜面按照比光反射侧的倾斜面相对于n型GaN基板的主表面((11-2-2)面)更成锐角的方式而形成,因此能够更大地形成从光射出面侧的n型包覆层25(参照图25)向n型GaN基板271侧散热的路径的截面积(图25的区域S)。其结果是,能够使激光器射出光的发热更高效地向n型GaN基板271侧散热。

另外,在上述第七实施方式中,对按照在光反射面235b(参照图40)的下部具有(保留)倾斜面235g(蚀刻面)和235i(刻面)的方式而形成的例子进行了表示,但本发明不局限于此,也可以按照光反射面235b到达n型GaN基板271的内部的方式进行形成光反射面235b(参照图40)时的干式蚀刻。由此,能够形成与上述第四实施方式的氮化物类半导体激光元件240(参照图41)具有同样的激光元件结构的氮化物类半导体激光元件。

另外,在上述第九实施方式的发光二极管芯片中,对在n型GaN基板的由a面((11-20)面)构成的主表面上形成槽部321之后再使发光元件层312进行结晶生长的例子进行了表示,但本发明不局限于此,也可以在例如m面((1-100)面)等n型GaN基板的与(000±1)面垂直的主表面上形成槽部(凹部)之后再形成发光元件层。

另外,在上述第十实施方式的发光二极管芯片中,对利用了在基底层355上利用n型GaN基板311和基底层355的晶格常数差而自发地形成裂纹40的工艺的例子进行了表示,但本发明不局限于此,也可以与上述第三实施方式同样,在n型GaN基板上的基底层上形成通过形成虚线状的线痕而控制了裂纹的发生位置的裂纹。

另外,在利用上述第十四和第十五实施方式的氮化物类半导体层的形成方法而形成的氮化物类半导体激光元件的制造工艺中,对以半导体激光元件层402的(000-1)端面为光射出面400a(450a)并且以(0001)端面为光反射面400b(450b)的例子进行了表示,但本发明不局限于此,也可以以(0001)端面为光射出面,并且以(000-1)端面为光反射面。

另外,在利用上述第十五实施方式的氮化物类半导体层的形成方法而形成的氮化物类半导体激光元件的制造工艺中,对作为基底基板使用n型GaN基板451并且在n型GaN基板451上形成有由AlGaN构成的基底层422的例子进行了表示,但本发明不局限于此,作为基底基板,也可以使用InGaN基板,并且也可以在InGaN基板上形成由GaN或AlGaN构成的基底层。

另外,在利用上述第十五实施方式的氮化物类半导体层的形成方法而形成的氮化物类半导体激光元件的制造工艺中,对利用了在基底层上利用n型GaN基板451和基底层422的晶格常数差而自发地形成裂纹45的工艺的例子进行了表示,但本发明不局限于此,也可以在基底层422上将裂纹导入用的线痕形成为虚线状。即使如此构成,也能够将以虚线状的线痕为起点沿B方向延伸的裂纹导入。另外,即使在基底层422的B方向的两端部(与n型GaN基板451的端部对应的区域)形成线痕,也能够将以两端部的线痕为起点沿B方向延伸的裂纹导入。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号