首页> 中国专利> 液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法

液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法

摘要

本发明提供一种液化气再液化装置,该液化气再液化装置能够紧凑地构成,且容易操作。液化气再液化装置(1)使货舱(3)内的LNG汽化生成的BOG再液化。液化气再液化装置(1)具有:制冷机群(20),其设置在凝结温度比BOG低的氮气循环的二次制冷剂循环流路(24)上,并使氮液化;输送泵(22),其在二次制冷剂循环流路(24)内输送制冷机群(20)冷却的液氮;热交换器(12),其设置在二次制冷剂循环流路(24)上,并使输送泵(22)输送的液氮与BOG发生热交换,并使该BOG凝结液化。热交换器(12)设置在货舱(3)的近旁。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-01-15

    专利权的转移 IPC(主分类):F17C13/00 登记生效日:20181226 变更前: 变更后: 申请日:20090226

    专利申请权、专利权的转移

  • 2016-06-22

    专利权的转移 IPC(主分类):F17C13/00 登记生效日:20160603 变更前: 变更后: 申请日:20090226

    专利申请权、专利权的转移

  • 2012-07-11

    授权

    授权

  • 2010-09-22

    实质审查的生效 IPC(主分类):F17C13/00 申请日:20090226

    实质审查的生效

  • 2010-08-04

    公开

    公开

说明书

技术领域

本发明涉及一种使LNG等液化气汽化生成的蒸发液化瓦斯(以下称之为“BOG”)再液化的液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法。

背景技术

例如,在LNG船上设置用于贮藏LNG(液化天然气)的LNG贮藏罐(液化气贮藏罐)。在该LNG贮藏罐内,穿过罐隔热层的侵入热使LNG蒸发汽化,从而产生BOG。为了防止由这种BOG造成的LNG贮藏罐内压力上升、并保持一定的内压,现有将BOG释放到外界空气、或使其再液化返回至LNG贮藏罐内的方法。作为使BOG再液化并返回至LNG贮藏罐内的方法,一般使用如下方法,即,通过压缩机将从LNG贮藏罐抽出的BOG加压,然后通过制冷机产生的冷能来使之冷却并凝结(参照专利文献1)。作为用于这种用途的制冷机,可以使用以氮气等作为一次制冷剂的布雷敦循环(ブレイトンサイクル)式制冷机。

专利文献1(日本)特开2005-265170号公报

但是,现有使用布雷敦循环的冷却方式中,存在需要构成压缩机及膨胀机等大型设备的问题,另外还存在对其操作需要具有熟练程度的问题。

发明的内容

本发明是鉴于以上情况而做出的发明,其以提供能够实现构成简便且操作容易的液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法。

为了解决上记课题,本发明的液化气再液化装置、具有该装置的液化气贮藏设备及液化气运输船、以及液化气再液化方法,采用以下手段。

本发明相关的液化气再液化装置,其特征在于,使由液化气贮藏罐内的液化气汽化生成的BOG再液化的液化气再液化装置具有:冷却机构,其设置在融点比所述BOG的凝结温度低的液体即二次制冷剂进行循环的二次制冷剂循环流路上,并使该二次制冷剂液化;液化二次制冷剂输送机构,其在所述二次制冷剂循环流路内输送由该冷却机构冷却的液化二次制冷剂;热交换机构,其设置在所述二次制冷剂循环流路上,并使所述液化二次制冷剂输送机构输送的液化二次制冷剂与所述BOG发生热交换,并使该BOG凝结液化,该热交换机构设置在所述液化气贮藏罐的近旁。

由液化气贮藏罐内的液化气汽化生成的BOG,通过由冷却机构液化的液化二次制冷剂,在热交换机构中凝结液化从而再液化。液化二次制冷剂,通过液化二次制冷剂输送机构而被输送至热交换机构。二次制冷剂在热交换机构与冷却机构之间,在二次制冷剂循环流路内循环。

根据本发明的液化气再液化装置,因为将热交换机构设置在液化气贮藏罐的近旁,所以能够在液化气贮藏罐的近旁使BOG再液化,且能够尽可能地排除如下的配管等系统,其用于将BOG引导输送至在远离液化气贮藏罐的远隔部所设置的冷却装置。由此,能够避免在将BOG输送至冷却装置时由侵入热(日文:侵入熱)造成的BOG温度上升,且能够降低用于使BOG再液化的冷却动力。另外,因为是在液化贮藏罐的近旁再液化,所以能够使配管等系统简便化,该配管等系统用于将再液化的液化气返回液化气贮藏罐。

因为只要通过液化二次制冷剂输送机构将由冷却机构液化的二次制冷剂输送至热交换机构、并使其在二次制冷剂循环流路内循环就可以了,所以能够简便地实现将二次制冷剂输送至热交换机构。

因为能够通过二次制冷剂循环流路将冷却机构从热交换机构分离、且远离液化气贮藏罐配置冷却机构,所以能够将冷却机构配置在瓦斯危险区域外,从而使冷却机构的操作更加简便。

作为通过冷却机构取得冷能的方式,主要可以举出将液化二次制冷剂过冷却(在本说明书中,所谓过冷却,是指在沸点以下冷却到液体状态的意思。)的强制循环方式,和使气体二次制冷剂冷却凝结的自然循环凝结方式。

在这里,“液化气”,作为其典型,可以举出液化天然气(LNG)。

作为“二次制冷剂”,只要融点比BOG低就可以,针对液化天然气,可以使用氮气等惰性气体或丙烷等烃气体。

作为“热交换机构”,优选使用热交换器,除此以外,也可以构成为在液化气贮藏罐或该罐的附属配管及配件上卷绕二次制冷剂流动的配管。

根据本发明的液化气再液化装置,所述热交换机构也可以设置在所述液化气贮藏罐的上方。

因为热交换机构设置在所述液化气贮藏罐的上方,所以可以利用重力作用使通过热交换机构凝结液化而再液化的液化气返回至下方的液化气贮藏罐。由此,可以省略用于将再液化的液化气压入液化气贮藏罐的泵等设备。

根据本发明的液化气再液化装置,所述热交换机构也可以设置于在多个所述液化气贮藏罐的上方设置的集管管道内。

在多个液化气贮藏罐的上方,设置有用于使BOG合流并引导BOG的集管管道。通过在该集管管道内设置热交换机构,能够以简便的构成实现再液化。

也可以设置用于将集管管道旁通的集管旁通管道,并在该集管旁通管道内设置热交换机构。

根据本发明的液化气再液化装置,也可以设置预冷机构,其用于通过所述蒸发液化瓦斯来预冷供给到所述二次制冷剂循环流路的二次制冷剂。

通过设置用于将二次制冷剂供给到二次制冷剂循环流路的路径、并由BOG所具有的冷能来预冷该被供给的二次制冷剂,能够降低用于冷却并液化二次制冷剂的动力。

根据本发明的液化气再液化装置,液化二次制冷剂输送机构也可以改变输送的液化二次制冷剂的流量。

通过由液化二次制冷剂输送机构来改变液化二次制冷剂的流量,能够防止由液化二次制冷剂的过冷却造成的固化。

根据本发明的液化气再液化装置,所述冷却机构也可以具有多个脉管制冷机(日文:冷凍機)。

脉管制冷机,因为与现有的布雷敦循环式制冷系统(日文:冷凍システム)相比其规模要小,所以操作极为简便。通过组合使用多个这样的脉管制冷机,作为制冷系统能够得到较高的冗余性,同时可以确保保养上的灵活性。另外,与现有的布雷敦循环式制冷系统相比,可以实现无需要求操作者的熟练度的制冷系统。

优选根据所述液化气贮藏罐内设置的温度计、压力计及泵吐出流量计中的至少任一测量结果,进行所述脉管制冷机的运转台数的控制、及/或各所述脉管制冷机的制冷能力的控制。

优选使二次制冷剂的组成及/或压力能够被设定,以便通过二次制冷剂的蒸发来凝结BOG。由此,能够大幅降低向热交换机构循环的二次制冷剂的量。

本发明的液化气贮藏设备特征在于,其具有:液化气贮藏罐;液化气再液化装置,其使由该液化气贮藏罐内的液化气汽化生成的BOG再液化。

上述液化气再液化装置适合用于液化气贮藏设备。作为液化气贮藏设备,例如,可以举出用于在海上贮藏LNG的海上LNG贮藏设施。

本发明的液化气运输船特征在于,其具有:液化气贮藏罐;液化气再液化装置,其使由该液化气贮藏罐内的液化气汽化生成的BOG再液化。

上述液化气再液化装置适合用于液化气运输船。作为液化气运输船,例如,可以举出用于运输LNG的LNG船。

本发明的液化气再液化方法,其使由液化气贮藏罐内的液化气汽化生成的BOG再液化,其特征在于,其具有:冷却机构,其设置在融点比BOG的凝结温度低的液体即二次制冷剂循环的二次制冷剂循环流路上,并使该二次制冷剂液化;液化二次制冷剂输送机构,其在所述二次制冷剂循环流路内输送由该冷却机构冷却的液化二次制冷剂;热交换机构,其设置在所述液化二次制冷剂循环流路上,并使由所述液化二次制冷剂输送机构输送的液化二次制冷剂与所述BOG发生热交换,并使该BOG凝结液化,通过该热交换机构进行的热交换发生在所述液化气贮藏罐的近旁。

根据本发明,因为通过二次制冷剂使BOG再液化的热交换机构设置在液化气贮藏罐的近旁,所以能够以简便的构成实现液化气再液化装置。

另外,因为通过多个脉管制冷机构成冷却机构,所以作为制冷系统能够得到较高的冗余性、并且能够实现无需要求操作人员具有一定熟练程度的制冷系统。

附图说明

图1是表示本发明的第一实施方式相关的配置有液化气再液化装置的LNG船的重要部位的构成示意图。

图2A是表示图1的热交换器的详细构造的剖面示意图。

图2B是表示图1的热交换器的详细构造的剖面示意图。

图3是表示本发明的第一实施方式相关的配置有液化气再液化装置的LNG船的重要部位的构成示意图。

附图标记说明

1 LNG再液化装置(液化气再液化装置)

3 货舱(液化气贮藏罐)

7 蒸汽集管(集管管道)

12 热交换器(热交换机构)

20 制冷机群(冷却机构)

21 脉管制冷机

22 输送泵(液化二次制冷剂输送机构)

24 二次制冷剂循环流路

26 气液分离罐

具体实施方式

下面,参照附图来说明本发明相关的实施方式。

(第一实施方式)

下面,利用图1来说明本发明的第一实施方式。

图1表示配置有液化气再液化装置的LNG船(液化气运输船)的重要部位。

LNG船包括多个独立的球形货舱(液化气贮藏罐)3,各货舱3内贮藏有液化天然气(LNG)。

在各货舱3的上方,经由隔离阀设置有蒸汽集管(vapor header line;集管管道)7。蒸汽集管7通用地接续于各货舱3,在各货舱3内回收LNG蒸发产生的BOG(以下称之为“BOG”)。蒸汽集管7上设置有从该蒸汽集管7分流且并列流通的旁通管(集管旁通管道)9。在旁通管9的两端部分别设置有隔离阀10。

旁通管9的流路内,收纳有热交换器12,通过该热交换器12使从各货舱3蒸发汽化产生的BOG凝结液化从而再液化。

旁通管9上设置有预冷热交换器14,其用于通过使一部分BOG流通、由BOG所具有的冷能来预冷氮气。氮气通过后述的压缩机43被压缩后,经由第一氮气供给配管13供给到预冷热交换器14。

在旁通管9的下部,设置有LNG运回配管16,其用于将由热交换器12再液化的LNG运回各货舱3。此外,在图1中,LNG运回配管16只连接从同图中左方开始的2个货舱3,但是这只是为了避免图示的繁琐而做出的省略,LNG运回配管16也可以与同图中右方开始的2个货舱3连接。

作为热交换器12,如图2A所示,适合使用美国的Chart Energy &Chemical公司的釜芯式(core in kettle;注册商标)热交换器。具体而言,构成为在旁通管9内配置引导液氮(LN2)的芯体18。芯体18成为板状翼片型的热交换器。芯体18内引导的液氮与周围的BOG发生热交换,从而蒸发变为氮气(N2)从芯体18流出。

如图2A所示,从下方取出由热交换器12冷却并凝结液化气LNG,通过图1中所示的LNG运回配管16引导至各货舱3.

此外,与图1所示的BOG的流路不同,在图2A中构成为BOG从上方的两处地方供给,但是这只是为了便于理解,关于BOG,如果构成为引导至热交换器12,则不限定其流通形态。例如,如图2B所示,也可以构成为在旁通管9的中途位置设置芯体18’、并使芯体18’浸泡于LN2

气体再液化装置1主要包括上述的热交换器12、使液氮过冷却的制冷机群(冷却机构)20、输送液氮的输送泵(液化二次制冷剂输送机构)22、使二次制冷剂即氮在热交换器12和制冷机群20之间循环的循环流路(二次制冷剂循环流路)24。

制冷机群20包括多个脉管制冷机21。脉管制冷机21,例如在通过由使用线性电动机的压缩机而在填充有氦气等的脉管内形成压力波、并由连接到脉管上的小孔等在压力变动和物质变动之间形成相位差,从而得到冷能。该脉管制冷机21具有不需要在冷热发生部设置滑动部而能够低振动地构成的优点。如图1所示,多个脉管制冷机21并联或串联连接于液氮流路,以便使液氮过冷却。这样,通过连接多个脉管制冷机21,从而能够灵活对应所需要的制冷能力,同时实现保养性优良的构成。

输送泵22将由制冷机群20冷却的液氮输送至热交换器12并使之循环,在本实施方式中并列设置2台。使各输送泵22的转速可调、且能够任意变更吐出流量。这样一来,通过适当变更吐出流量,从而能够防止过冷却的液氮滞留于配管内而产生液氮凝固。

在输送泵22和制冷机群20之间,设置有气液分离罐26。在气液分离罐26的下方,连接有制冷机出口侧下方配管27,从而使液氮从制冷机群20供给到同罐26的下方。另外,在气液分离罐26的上方,连接有制冷机出口侧上方配管28,从而使从制冷机群20供给的液氮在同罐26的上方形成的气相中喷雾。这样一来,通过在气相中使液氮喷雾,从而使供给到同罐26内的氮气有效凝结。

此外,在制冷机出口侧下方配管27上设置有压力控制阀27a,从而可以控制气液分离罐26内的液相压力。另外,在制冷机出口侧上方配管28上设置减压阀28a,从而可以控制供给到气液分离罐26内的液氮的流量。

在气液分离罐26的下端,设置有与输送泵22的上流侧连接的液氮流出配管30。液氮从该液氮流出配管30排出并通过输送泵22来输送。

在输送泵22的下游侧设置有液氮吐出配管32。液氮吐出配管32设置在输送泵22与热交换器12之间。在液氮吐出配管32上设置有压力控制阀32a,从而能够控制供给到热交换器12的液氮的压力。

在气液分离罐26的下方与液氮吐出配管32的中途位置之间,设置有液氮旁路配管34。通过该液氮旁路配管34能够使一部分液氮返回至气液分离罐26。

在气液分离罐26的上方,设置有返回气体冷却用交换器38,其用于将通过氮气返回配管36从热交换器12引导的氮气进行预冷。该返回气体冷却用热交换器38与从液氮吐出配管32的中途位置分岔的液氮分支配管40连接,从而引导过冷却的液氮。另外,从返回气体冷却用热交换器38流出的液氮经由制冷机群入口配管42而被引导至制冷机群20。

如以上所述,二次制冷剂即氮的循环流路24,主要包括输送泵22、液氮吐出配管32、热交换器12、氮气返回配管36、气液分离罐26。

用作二次制冷剂的氮,由未图示的氮气产生装置供给。从该氮气供给装置供给的氮通过氮气干燥机51(参照图1的右下)除去水分及二氧化碳后,被引导至氮气保存罐53。此外,氮气保存罐53为常温。

在氮气保存罐53的上流侧设置有压缩机54,其由马达54a旋转驱动。作为压缩机54优选使用螺旋式。通过压缩机54而被升压的氮气通过氮气吐出配管55,通过分支点55a被引导至第一氮气供给配管13及第二氮气供给配管57。

如上述所示,通过第一氮气供给配管13引导的氮气,在预冷热交换器14中通过BOG预冷后,在位于热交换器12极近的位置上的氮气返回配管36的上流侧合流。

通过第二氮气供给配管57引导的氮气,在位于离返回气体预冷热交换器38的上流侧极近的位置上的氮气返回配管36的下游侧合流。

其次,对上记结构的LNG再液化装置1的动作进行说明。

贮留在气液分离罐26的液氮,通过输送泵22,从同罐26的下端经由液氮流出配管30而被取出,并经由液氮吐出配管32将其引导至热交换器12。引导至热交换器12的液氮的压力通过压力控制阀32a来调整。

引导至热交换器12的液氮与被引导至旁通管9的BOG进行热交换。即,液氮通过热交换器12,给予BOG蒸发潜热,并使之蒸发汽化。另一方面,BOG通过液氮的蒸发潜热而被冷却并凝结液化。凝结液化的BOG作为再液化的LNG,经由LNG返送配管16被返送至各货舱3。

在热交换器12蒸发的氮,作为氮气经由氮气返回配管36而被引导至返回气体预冷热交换器38。在该返回气体预冷热交换器38中,氮气通过从液氮分支配管40分流的一部分液氮而被冷却。在返回气体预冷热交换器38中冷却的氮气,从气液分离罐26的上方引导至同罐26内。在同罐26内的上部空间即气相部,从制冷机出口侧上方配管28引导的液氮喷雾,由此从上方供给的氮气凝结液化并贮留在同罐26的下方空间。此外,在同罐26内喷雾的液氮可以通过减压阀28a来调整流量。

液氮通过制冷机群20而被冷却。即,经由制冷机群入口配管42引导的液氮通过串联或并联连接的多个脉管制冷机21而被冷却、过冷却。过冷却后的液氮经由制冷机群出口配管43流出,一部分向制冷机出口侧上方配管28分流,剩余部流向制冷机出口侧下方配管27。液氮在通过制冷机出口侧下方配管27的时候,在通过压力控制阀27a进行压力调整之后,流入气液分离罐26内。

另一方面,如下记载所示,氮被供给到循环流路24。

从未图示的氮气产生装置引导的氮在通过氮气干燥机51除去水分及二氧化碳后,被引导至氮气保存罐53。通过由马达54a驱动的压缩机54而被升压且从氮气保存罐53引导的氮气,在分支点55a,被向第一氮气供给配管13及第二氮气供给配管57引导。

被向第一氮气供给配管13引导的氮气,在预冷热交换器14中通过BOG的显热而被预冷,并被向氮气返回配管36引导。在预冷热交换器14给予冷能后的BOG,在通过未图示的燃烧机构被燃烧处理后,放出至大气。这样,燃烧处理一部分BOG是为了排出滞留在货舱3内并浓缩的氮的部分。

被向第二氮气供给配管57引导的氮气在氮气返回配管36的下游侧合流后,通过返回气体预冷热交换器38而被冷却。

如上所述,根据本实施方式相关的LNG再液化装置1,起到以下效果。

因为在货舱3的近旁设置有将BOG凝结液化的热交换器12,所以能够在货舱3的近旁使在货舱3产生的BOG液化。因此,可以尽可能将用于引导BOG至设置在远离货舱的远隔部的冷却装置的配管等系统排除。由此,可以避免在将BOG输送到冷却装置的过程中,由侵入热造成BOG温度上升,从而能够降低用于液化BOG的冷却动力。另外,因为是在货舱3的近旁再液化,所以在向货舱3返送再液化的LNG的时候只需要LNG返送配管16就可以了,从而能够排除冗长的配管等系统。

通过输送泵22将由制冷机群20液化的二次制冷剂(氮)输送到热交换器12,仅使其在二次制冷剂循环流路24内循环即可,因此能够简便地实现将二次制冷剂(氮)输送至热交换器12。

通过二次制冷剂循环流路24将制冷机群20从热交换器12分离,从而使其能够远离货舱3配置,因此能够将制冷机群20配置在瓦斯危险区域外,从而使制冷机群20的操作变得更加简便。

因为热交换器12设置在货舱3的上方,所以能够利用重力作用将由热交换器12凝结液化的再液化LNG向下方的货舱3返送。由此,能够省略用于将再液化的LNG压入货舱3的泵等设备。

设置有与在LNG罐上方设置的蒸汽集管7并行配置的旁通管9,在该旁通管9内配置热交换器12。由此,能够以简便的结构实现BOG的再液化。

设置有第一氮气供给配管13,其用于将氮气(二次制冷剂)供给到作为二次制冷剂循环流路24其中之一的氮气返回配管36,在预冷热交换器14中,通过BOG所具有的冷能对该供给的氮气进行预冷,因此能够降低用于将氮气冷却并液化的动力。

另外,通过返回气体预冷热交换器38对从第二氮气供给配管57引导的常温氮气进行预冷,因此能够降低用于将氮气冷却并液化的动力。

因为通过输送泵22可以调节液氮的流量,所以能够防止由过冷却而过剩的液氮滞留在配管内而造成固化。

与现有需要大型压缩机及膨胀器的布雷敦循环式制冷系统相比,因为使用多个小型且操作极为简便的脉管制冷机21构成制冷机群20,所以能够得到较高的冗余性、能够确保保养上的灵活性,并且能够实现无需要求操作人员具有一定熟练程度的制冷系统。

(第二实施方式)

下面,参照附图3对第二实施方式进行说明。

本实施方式代替第一实施方式中通过制冷机群20过冷却液氮的强制循环方式,而选择使用通过制冷机群20冷却氮气并使之凝结液化的自然凝结方式,在这点上,二者差别甚大。因此,与第一实施方式公用的构成要素,使用同一符号表示,同时省略其说明。

在本实施方式中,在热交换器12中用于返送蒸发汽化的氮气的氮气返回配管36直接连接到气液分离罐26上。即,从氮气返回配管36返送的氮气不经由用于预冷的热交换器(参照图1的符号38)而供给到气液分离罐26内的气相部。

在气液分离罐26的上端连接有制冷机群入口配管42,从这个位置抽出气液分离罐26内的氮气,将其向制冷机群20引导并冷却从而凝结液化。在图3中,构成制冷机群20的多个脉管制冷机21只是并联连接,而没有串联连接,但是本发明并不仅仅限于这样的构成,也可以并联且串联连接多个脉管制冷机21。

由制冷机群20冷却从而凝结液化的液氮,经由制冷机群出口配管43而被向气液分离罐26内引导,并贮留在同罐26内。

另一方面,由压缩机54压缩的氮气通过氮气吐出配管55,在通过气体-气体热交换器60后,被向制冷机群20引导。流经氮气吐出配管55的常温氮气,与通过从制冷机群入口配管42分岔的氮气回收配管62引导的冷却后的氮气,在气体-气体热交换器60中进行热交换。从压缩机54供给的氮气,通过该气体-气体热交换器60来预冷,并被向制冷机群20引导。由此,可以节省用于将氮气凝结液化的冷却动力。

下面,对上记结构的LNG再液化装置1的动作进行说明。

贮留在气液分离罐26的液氮,通过输送泵22,从同罐26的下端经由液氮流出配管30而被取出,并经由液氮吐出配管32将其向热交换器12引导。

向热交换器12引导的液氮与被向旁通管9引导的BOG进行热交换。即,液氮通过热交换器12,给予BOG蒸发潜热,并使之蒸发汽化。另一方面,BOG通过液氮的蒸发潜热而被冷却并凝结液化。凝结液化的BOG作为再液化的LNG,经由LNG返送配管16被向各货舱3返送。

在热交换器12中蒸发的氮,作为氮气经由氮气返回配管36而被向气液分离罐26内的气相部引导。被向气液分离罐26内引导的氮气从制冷机群入口配管42被向制冷机群20引导,并通过各脉管制冷机21来冷却从而凝结液化。这样一来,在本实施方式中采用使氮气在制冷机群20中凝结液化的自然循环凝结方式。被液化的液氮经由制冷机群出口配管43而被向气液分离罐26引导,并贮留在同罐26的下部。

经由制冷机群入口配管42而从气液分离罐26取出的氮气,其一部分没有流向制冷机群20而是分流,并经由氮气回收配管62而向氮气保存罐53引导。在通过该氮气回收配管62的时候,在气体-气体热交换器60,与经由氮气吐出配管55从由马达54a驱动的压缩机流出的常温氮气进行热交换。由此,使从压缩机54向制冷机群20输送的氮气被预冷,从而降低各脉管制冷机21的制冷动力。

如上所述,根据本实施方式相关的LNG再液化装置1,起到以下效果。

因为在货舱3的近旁设置有将BOG凝结液化的热交换器12,所以能够在货舱3的近旁使在货舱3产生的BOG液化。因此,可以尽可能排除配管等系统,该配管等系统用于引导BOG至设置在远离货舱的远隔部的冷却装置。由此,可以避免在将BOG输送到冷却装置的时候由侵入热造成的BOG温度上升,从而能够降低用于液化BOG的冷却动力。另外,因为是在货舱3的近旁再液化,所以在向货舱3返送再液化的LNG的时候,只需要LNG返送配管16就可以了,从而能够排除冗长的配管等系统。

通过输送泵22将由制冷机群20液化的二次制冷剂(氮)仅向热交换器12输送,并使其在二次制冷剂循环流路24内循环就可以了,因此,在与现有输送由制冷机液化的一次制冷剂的情况相比,液化制冷剂的处理变得容易,从而能够简便地实现将二次制冷剂(氮)输送至热交换器12。

通过二次制冷剂循环流路24将制冷机群20从热交换器12分离,从而使其能够远离货舱3配置,因此能够将制冷机群20配置在瓦斯危险区域外,从而使制冷机群20的操作变得更加简便。

因为热交换器12设置在货舱3的上方,所以能够利用重力作用将由热交换器12凝结液化的再液化LNG向下方的货舱3返送。由此,能够省略用于将再液化的LNG压入货舱3的泵等设备。

设置有与在LNG罐上方设置且用于引导BOG的蒸汽集管7并行配置的旁通管9,在该旁通管9内配置热交换器12。由此,能够以简便的结构实现BOG的再液化。

因为通过气体-气体热交换器60对从压缩机54供给到制冷机群20的氮气进行冷却,所以能够降低构成制冷机群20的脉管制冷机21的冷却动力。

与现有需要大型压缩机及膨胀器的布雷敦循环式制冷系统相比,因为使用多个小型且操作极为简便的脉管制冷机21构成制冷机群20,所以能够得到较高的冗余性、同时能够确保保养上的灵活性,并能够实现无需要求操作人员具有一定熟练程度的制冷系统。

此外,在上述各实施方式中,虽然对用于LNG船的LNG再液化装置进行了说明,但是本发明并不仅限于此,例如,也可以是LNG贮藏设备,尤其是在海上设置的LNG贮藏设备。

另外,虽然作为再液化的气体以LNG为例进行了说明,但是本发明并不仅限于此,代替LNG,也可以适用于LPG、氨等。

另外,虽然作为二次制冷剂以氮为例进行了说明,但是本发明并不仅限于此,代替氮,也可以使用氩等其他惰性气体。

另外,虽然构成为在旁通管9内配置热交换器12,但是本发明并不仅限于此,例如,如图1的符号A所示,也可以在蒸汽集管7内(优选在各货舱3之间各一个)设置多个热交换器12。由此,也可以省略旁通管9,从而能够使构成更加简便。当然,这种构成也能够适用于图3所示的第二实施方式。

另外,虽然以将热交换器12插入旁通管9或蒸汽集管7内的构成为具体例进行了说明,但是也可以是除此以外的构成。例如,也可以构成为在货舱3或货舱3的附属配管或配件上卷绕液氮流动的配管。

另外,优选能够设定二次制冷剂的组成及/或压力,以便可以通过二次制冷剂的蒸发来进行BOG的凝结。由此,能够大幅降低向热交换机构循环的二次制冷剂的量。

另外,优选根据设置在货舱3内的温度计、压力计及泵吐出流量计中的至少任一测量结果,进行脉管制冷机21的运转台数的控制、及/或各脉管制冷机21的制冷能力的控制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号