首页> 中国专利> 位置检测系统、引导系统、位置检测方法、医用装置、和医用磁感应及位置检测系统

位置检测系统、引导系统、位置检测方法、医用装置、和医用磁感应及位置检测系统

摘要

本发明提供位置检测系统、引导系统、位置检测方法、医用装置、和医用磁感应及位置检测系统。所述位置检测系统使得无需调整即可对装置进行位置检测并且使得装置可以制造得更紧凑且更便宜,该位置检测系统包括:具有磁感应线圈的装置,即囊状内窥镜(20);用于产生交变磁场的驱动线圈(51);磁场传感器(52);用于位置计算频率的频率确定部(50B);以及位置分析单元(50A),其用于在位置计算频率,基于在仅施加交变磁场时来自磁场传感器(52)的输出与在施加交变磁场和感应磁场时来自磁场传感器(52)的输出之间的差,计算装置(20)的位置或取向或这两者;并且,基于位置计算频率来限制交变磁场的频率范围或磁场传感器的输出频率范围或这两者。

著录项

  • 公开/公告号CN101080198A

    专利类型发明专利

  • 公开/公告日2007-11-28

    原文格式PDF

  • 申请/专利权人 奥林巴斯株式会社;

    申请/专利号CN200580042938.9

  • 申请日2005-12-16

  • 分类号A61B5/06(20060101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人李辉

  • 地址 日本东京

  • 入库时间 2023-12-17 19:28:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-02-02

    未缴年费专利权终止 IPC(主分类):A61B5/06 授权公告日:20101208 终止日期:20161216 申请日:20051216

    专利权的终止

  • 2010-12-08

    授权

    授权

  • 2008-01-23

    实质审查的生效

    实质审查的生效

  • 2007-11-28

    公开

    公开

说明书

技术领域

本发明涉及位置检测系统、引导系统、位置检测方法、医用装置、以及医用磁感应及位置检测系统。

背景技术

近来,已经研究并开发了以囊状内窥镜等为代表的由患者吞下以进入患者体内的可吞咽囊状医用装置,在患者体内,它们穿过体腔中的通道以捕捉体腔中的通道内部的目标位置的图像。上述囊状内窥镜具有这样的构造:其中设置有可以执行上述医学过程的图像形成装置(例如可以获取图像等的CCD(电荷耦合器件)),并且在体腔中的通道内部的目标位置处执行图像获取。

然而,上述囊状医用装置简单地随着蠕动而沿消化道移动,不能控制该囊状医用装置的位置和取向。为了使这种囊状医用装置可靠地到达体腔中的通道内的目标位置、或者使其停留在目标位置处以执行详细的检查等(这需要一段时间),必须执行对该囊状医用装置的引导控制而不是依赖于体腔中的通道的蠕动。因而,已经提出了这样一种解决方案:通过在囊状医用装置内部安装磁体并从外部施加磁场来引导该装置,以控制该装置的位置等。此外,还已经提出了用于在体腔中的通道内部驱动囊状医用装置的技术(例如,参见日本特开2002-187100号公报(下文中称为文献1))。

为了易于使用囊状医用装置进行诊断,必须引导这种囊状医用装置以检测该囊状医用装置位于体腔内的通道中的什么位置;由此,已经提出了在已将囊状医用装置引导到不能用视觉确认其位置的部位(如体腔中的通道内部)时对该装置的位置进行检测的技术(例如,参见国际公报2004/014225号小册子(下文中称为文献2)、日本特许3321235号公报(下文中称为文献3)、日本特开2004-229922号公报(下文中称为文献4)、以及日本特开2001-179700号公报(下文中称为文献5))。磁位置检测方法也是一种用于检测医用装置的位置的公知方法。作为用磁性方式检测位置的一种方法,存在通过向其中安装有线圈的检测对象施加外部磁场并检测因其感应电动势而产生的磁场来识别检测对象的位置的公知技术(例如,参见日本特开昭6-285044号公报(下文中称为文献6),以及Tokunaga,Hashi,Yabukami,Kouno,Toyoda,Ozawa,Okazaki,和Arai的“High-resolution position detection system using LC resonantmagnetic marker”,Magnetics Society of Japan,2005,29,p.153-156(下文中称为文献7))。

上述文献2公开了这样一种技术:通过使用多个外部检测器来检测从设置有其中AC电源连接到LC谐振电路的磁场产生电路的囊状医用装置发出的电磁,从而检测该囊状医用装置的位置。

然而,在上述LC谐振电路中使用的线圈的频率特性因在制造该线圈时出现的变化而在预定范围内出现变化。此外,LC谐振电路的频率特性还受线圈和电容器的特性的变化的影响,导致在预定范围内出现变化的问题。

针对上述问题的一种公知解决方案是使用可以调节其电容的电容器(可变电容器)、可以调节其频率特性的线圈(可以调节线圈的芯的位置的线圈)等的技术。

然而,因为对元件设置调节机构(例如这些可调电容器和线圈),所以存在难以减小囊状医用装置的尺寸的问题。

此外,还公知可以通过对具有不同电容的多个电容器进行选择以匹配线圈特性来抑制LC谐振电路的频率特性的变化的技术。

然而,如果根据单独LC谐振电路来选择电容器的电容,则LC谐振电路的制造步骤的数量增加,导致囊状医用装置的制造成本增加的问题。

此外,因为必须在囊内部使用电源,并且因为必须增加电源容量,所以难以减小囊尺寸。此外,还存在囊的工作时间减少的问题。

发明内容

构想了本发明以解决上述问题,本发明的目的是提供一种位置检测系统、引导系统和位置检测方法,其不需要对诸如囊状医用装置等的装置的位置检测中使用的交变磁场进行频率调节,并且可以减小该装置的尺寸和成本。

为了实现上述目的,本发明提供了下面的解决方案。

本发明的第一方面是一种位置检测系统,该位置检测系统包括:配备有磁感应线圈的装置;驱动线圈,用于产生交变磁场;多个磁场传感器,用于检测当磁感应线圈接收到交变磁场时产生的感应磁场;频率确定部,用于确定基于磁感应线圈的谐振频率的位置计算频率;以及位置分析单元,用于基于在仅施加交变磁场时磁场传感器的输出与在施加交变磁场和感应磁场时磁场传感器的输出之间的差,在位置计算频率计算装置的位置和取向中的至少一个,其中,基于位置计算频率,限制交变磁场的频率范围和磁场传感器的输出频率范围中的至少一个。

根据这个方面,因为可以通过检测感应磁场来确定磁感应线圈的频率特性(谐振频率就是这样一个频率特性),所以即使单个磁感应线圈的频率特性改变,频率确定部也可以基于这些改变的频率特性来确定位置计算频率。因此,即使磁感应线圈的频率特性改变,这个方面的位置检测系统也始终可以基于位置计算频率来计算装置的位置和取向。

结果,不需要安装用于调节磁感应线圈等的频率特性的元件,这使得可以减小装置的尺寸。更具体地说,为了调节谐振频率,不必对诸如与磁感应线圈一起组成谐振电路的电容器的元件进行选择或调节,这可以防止装置的制造成本增加。

因为在计算装置的位置和取向时仅仅使用按位置计算频率的交变磁场,所以与例如交变磁场的频率在预定范围内发生摆动的方法相比,可以缩短用于计算位置和取向所需要的时间。

此外,其中磁感应线圈的谐振频率改变的情况的示例是这样一种情况:在用于控制装置的运动的构造中,通过将磁体内置到装置中并且施加外部磁场以控制该内置磁体的移动,因该内置磁体的影响而使得磁感应线圈的谐振频率改变。

同样在这种情况下,因为频率确定部可以基于受内置磁体影响的谐振频率来确定位置计算频率,所以可以计算装置的位置和取向而不需要使用用于调节谐振频率等的元件。

在上述的本发明的第一方面中,优选的是,频率确定部基于在施加感应磁场时从磁场传感器的输出来确定位置计算频率。

根据这个构造,基于因感应磁场而来自磁场传感器的输出来确定磁感应线圈的谐振频率,并且基于该谐振频率来确定位置计算频率。因此,可以使用恰当的位置计算频率来计算单独装置的位置和取向。结果,可以防止对装置的位置和取向的计算精度的下降,并且可以防止计算所需要的时间的增加。

此外,上述第一方面优选地还包括:磁场频率改变部,该磁场频率改变部用于周期性地改变交变磁场的频率,其中,频率确定部基于在施加通过接收频率随时间改变的交变磁场而产生的感应磁场时来自磁场传感器的输出,确定位置计算频率。

根据这个构造,因为使用频率随时间改变的交变磁场来确定磁感应线圈的谐振频率,所以即使磁感应线圈的谐振频率的变化很大,也可以确定谐振频率。因此,可以使用恰当的位置计算频率来计算单独装置的位置和取向,这使得能够防止对装置的位置和取向的计算精度的下降,并且能够防止计算所需要的时间增加。

上述的第一方面优选地还包括:脉冲磁场产生部,该脉冲磁场产生部用于向驱动线圈施加脉冲驱动电压以产生脉冲磁场,其中,频率确定部基于在施加通过接收脉冲磁场而产生的感应磁场时来自磁场传感器的输出,确定位置计算频率。

根据这个构造,因为脉冲磁场具有许多频率分量,所以与例如磁场的频率发生摆动的方法相比,可以在较短的时段内确定磁感应线圈的频率特性,此外,可以在较宽的频率范围上确定谐振频率。结果,可以使用恰当的位置计算频率来计算单独装置的位置和取向,这使得可以防止对装置的位置和取向的计算精度的降低,并且使得可以防止计算所需要的时间增加。

上述第一方面优选地还包括:混合磁场产生部,该混合磁场产生部用于产生混合了多个不同频率的交变磁场;和可变频带限制部,该可变频带限制部用于限制磁场传感器的输出频率范围,并且用于改变限制的范围,其中,频率确定部基于通过可变频带限制部从在施加通过接收混合了所述多个不同频率的交变磁场而产生的感应磁场时所述多个磁场传感器的多个输出中获得的输出,来确定位置计算频率。

根据这个构造,因为使用混合有多个不同频率的交变磁场来确定磁感应线圈的谐振频率,所以即使磁感应线圈的谐振频率的变化很大,与使用具有随时间改变的预定频率的交变磁场的情况相比,也可以较容易地确定谐振频率。

此外,通过使用可变频带限制部,可以基于在向所述多个磁场传感器施加通过接收上述交变磁场而产生的感应磁场时所述多个磁场传感器的多个输出中的预定频率范围内的输出,来确定位置计算频率。

上述第一方面优选地还包括:存储器部,该存储器部用于存储关于磁感应线圈的谐振频率的信息,其中,频率确定部接收该信息,并且基于该信息来确定位置计算频率。

根据这个构造,通过基于保持在存储器部中的关于磁感应线圈的谐振频率的信息来确定位置计算频率,与每次执行对装置的位置检测时都测量谐振频率以确定位置计算频率的方法相比,可以减小计算装置的位置和取向所需要的时间。

上述第一方面还可以包括驱动线圈控制部,该驱动线圈控制部用于基于位置计算频率来控制驱动线圈。

根据这个构造,因为可以基于位置计算频率来控制驱动线圈,所以可以控制由驱动线圈产生的交变磁场的频率。

在上述第一方面中,位置检测系统优选地还包括频带限制部,该频带限制部用于基于位置计算频率来限制磁场传感器的输出频带。

根据这个构造,可以基于位置计算频率来控制磁场传感器检测的感应磁场等的输出频带。因此,可以在低噪声的情况下获得在包括位置计算频率在内的频率范围中的磁场传感器输出,并且可以基于此来计算装置的位置和取向。

在上述第一方面中,频带限制部优选地使用傅立叶变换。

根据这个构造,频带限制部通过使用傅立叶变换而使得能够更有效地消除噪声。

在上述第一方面中,所述多个磁场传感器优选地被设置为面对装置的工作区域的多个取向。

根据这个构造,无论装置的位置如何,具有可检测强度的感应磁场都会作用在按上述多个方向设置的所述多个磁场传感器中的按至少一个方向设置的磁场传感器上。

作用于磁场传感器上的感应磁场的强度受装置与磁场传感器之间的距离、以及装置与驱动线圈之间的距离的影响。因此,即使装置处于作用于沿一个方向设置的磁场传感器上的感应磁场很弱的位置,在沿其他方向设置的磁场传感器中,作用于其的感应磁场也并不弱。

结果,无论装置的位置如何,磁场传感器都始终可以检测到感应磁场。

因为获取的磁场信息的条数与设置在不同位置处的磁场传感器的数量相同,所以可以根据这些条数的磁场信息来获取装置的位置信息等。

例如,关于装置获取的信息包含总计6条信息,即,该装置的X、Y、Z坐标,关于与内置线圈的中心轴正交并且还彼此正交的两个轴的旋转相位和θ,以及感应磁场的强度。因此,如果获取了6条或更多条磁场信息,则可以确定上述6条位置信息,并且可以确定装置的位置和取向以及感应磁场的强度。

上述第一方面优选地还包括:磁场传感器选择单元,该磁场传感器选择单元用于选择信号输出在所述多个磁场传感器的输出信号中很强的磁场传感器。

根据这个构造,因为可以通过选择具有强信号输出的磁场传感器来获取噪声分量相对于信号强度来说很小的信号输出,所以可以减小要进行计算处理的信息量,这使得能够减小计算负荷。此外,因为减小了计算负荷,所以可以缩短计算所需要的时间。

在上述第一方面中,驱动线圈和所述多个磁场传感器优选地设置在装置的工作区域的任一侧上的相对位置处。

根据这个构造,因为驱动线圈和磁场传感器设置在上述工作区域的任一侧上的相对位置处,所以可以将驱动线圈和磁场传感器定位为以使他们在结构上不发生干扰。

上述第一方面还可以包括:相对位置测量单元,该相对位置测量单元用于测量驱动线圈与磁场传感器之间的相对位置;信息存储部,该信息存储部用于将作为在仅施加交变磁场时来自磁场传感器的输出值的基准值与此时来自相对位置检测单元的输出彼此关联地存储;以及当前基准值产生部,该当前基准值产生部用于基于相对位置测量单元的输出和信息存储部中的信息,产生在仅施加交变磁场时磁场传感器的当前输出值作为当前基准值。

根据这个构造,即使驱动线圈和磁场传感器可以发生相对移动,也可以确定装置的位置和取向。

因为存储了装置的基准值和相对位置,所以即使驱动线圈和磁场传感器的相对位置在检测装置的位置时出现不同,也不需要重新测量基准值等。

在上述第一方面中,当前基准值产生部优选地产生与最接近于相对位置测量单元的当前输出的相对位置相关联的基准值,作为当前基准值。

根据这个构造,因为将与最接近于相对位置测量单元的输出的相对位置相关联的基准值定义为当前基准值,所以可以缩短产生当前基准值所需要的时间。

在上述第一方面中,当前基准值产生部优选地确定将相对位置与基准值相关联的预定近似式,并且基于该预定近似式和来自相对位置测量单元的当前输出而产生当前基准值。

根据这个构造,因为基于预定近似式来产生当前基准值,所以与例如由基准值直接限定当前基准值的方法相比,可以产生更准确的当前基准值。

在上述第一方面中,所述装置被优选地用作囊状医用装置。

此外,本发明的第二方面是一种引导系统,该引导系统包括:根据上述第一方面的位置检测系统;安装在装置中的引导磁体;引导磁场产生单元,该引导磁场产生单元用于产生要施加到引导磁体的引导磁场;以及引导磁场方向控制单元,该引导磁场方向控制单元用于控制引导磁场的方向。

根据本发明的第二方面,通过对施加到内置于装置中的引导磁体的磁场的方向进行控制,可以控制施加在引导磁体上的力的方向,并且可以控制装置的运动方向。

此外,同时,可以检测装置的位置并且将装置引导到预定位置。

在上述第二方面中,优选的是,引导磁场产生单元包括按相互正交的方向彼此相对地设置的三对框形电磁体;在这些电磁体的内侧设置有患者可以位于其中的空间;并且驱动线圈和磁场传感器设置在患者可以位于其中的所述空间的周围。

根据该构造,通过对从按相互正交方向相对设置的三对框形电磁体产生的各个磁场强度进行控制,可以按预定方向控制在这些电磁体的内侧产生的平行磁场的方向。因此,可以向装置施加预定方向的磁场,这使得装置可以沿预定方向移动。

此外,在装置为囊状医用装置的情况下,电磁体的内侧的空间是患者可以位于其中的空间,驱动线圈和磁场传感器设置在该空间周围;因此,可以将装置(囊状医用装置)引导到患者体内的预定位置。

在上述第二方面中,优选地在装置的外表面上设置有螺旋部,该螺旋部用于将围绕装置的纵轴的旋转力转换为沿纵轴方向的推力。

根据这个构造,当将围绕纵轴的旋转力施加到装置时,通过该螺旋部的作用而产生沿装置纵向推动该装置的力。因为螺旋部产生了推力,所以通过对围绕纵轴的旋转方向进行控制,可以控制作用于装置上的推力的方向。

在上述第二方面中,如果装置为囊状医用装置,则引导系统优选地还包括:图像捕捉单元,该图像单元位于所述装置(囊状医用装置)中,具有沿该装置的纵轴的光轴;显示单元,该显示单元用于显示由图像捕捉单元捕捉的图像;以及图像控制单元,该图像控制单元基于通过引导磁场方向控制单元对于装置纵轴的旋转信息,沿相反方向旋转由图像捕捉单元捕捉的图像,并且将它们显示在显示单元上。

根据这个构造,因为基于旋转信息(关于纵轴的旋转相位信息)对上述获取的图像进行处理以使其沿与装置(囊状医用装置)的旋转方向相反的方向旋转,所以无论装置的旋转相位如何,都始终可以在显示单元上显示它们,就像它们是按预定旋转相位获得的图像一样。

例如,当在操作员观看显示在显示单元上的图像的同时对囊状医用装置进行引导时,与显示图像和囊状医用装置的旋转一起旋转的情况相比,如上所述的将显示图像转换为具有预定旋转相位的图像使得更容易将囊状医用装置引导到预定位置。

本发明的第三方面是一种用于装置的位置检测方法,该位置检测方法包括以下步骤:特性获取步骤,该特性获取步骤获取安装在装置中的磁感应线圈的特性;频率确定步骤,该频率确定步骤根据所述特性确定位置计算频率;限制步骤,该限制步骤基于位置计算频率来限制交变磁场的频率范围和磁传感器的频率范围中的至少一个;交变磁场产生步骤,该交变磁场产生步骤产生包括位置计算频率分量的交变磁场;测量步骤,该测量步骤获取来自磁场传感器的输出;以及位置计算步骤,该位置计算步骤确定磁感应线圈的位置和取向中的至少一个。

根据上述第三方面,不必设置用于调节磁感应线圈的谐振频率的元件等,这使得可以减小装置的尺寸。更具体地说,不必为了调节谐振频率而对与磁感应线圈一起组成谐振电路的诸如电容器等的元件进行选择或调节,这防止了装置的制造成本增加。

因为仅仅使用位置计算频率的交变磁场来计算装置的位置和取向,所以与例如每次执行对装置的位置检测时交变磁场的频率都在预定范围内摆动的方法相比,可以缩短计算位置和取向所需要的时间。

此外,根据上述第三方面,因为可以例如通过检测感应磁场来确定磁感应线圈的特性,所以即使磁感应线圈的特性存在一些变化,也可以基于具有这种变化的特性来确定位置计算频率。因此,即使磁感应线圈的特性改变,也始终可以基于位置计算频率来计算装置的位置和取向。

此外,根据上述第三方面,可以例如基于预先存储在装置中的磁感应线圈的特性来确定位置计算频率。因此,与每次执行对装置的位置检测时都获取该特性以确定位置计算频率的方法相比,可以缩短计算装置的位置和取向所需要的时间。

在上述第三方面中,优选地重复进行测量步骤和位置计算步骤。

根据这个构造,通过重复进行测量步骤和位置计算步骤,可以重复地确定磁感应线圈的位置和取向中的至少一个。

根据上述第一到第三方面中所述的本发明的位置检测系统、引导系统和装置位置检测方法,因为频率确定部可以基于其变化的谐振频率来确定计算频率,并且可以基于该计算频率来计算装置的位置和取向,所以提供的优点在于可以不需要对在装置位置检测中使用的交变磁场等的频率调节。

由此,不必设置用于调节磁感应线圈的谐振频率的元件等,这是有利的,因为可以减小装置的尺寸。更具体地说,不必为了调节谐振频率而对与磁感应线圈一起组成谐振电路的诸如电容器等的元件进行选择或调节,由此提供如下优点:可以减小装置的制造成本。

本发明的第四方面是一种医用磁感应及位置检测系统,该医用磁感应及位置检测系统包括:医用装置,该医用装置被插入患者体内,并且具有至少一个磁体和包括内置线圈的电路;第一磁场产生部,该第一磁场产生部用于产生第一磁场;磁场检测部,该磁场检测部用于检测由于第一磁场而在内置线圈中感应出的感应磁场;以及一组或更多组相对线圈(opposing coil),所述一组或更多组相对线圈用于产生要施加到磁体的第二磁场,其中,组成相对线圈的两个线圈被分开驱动。

根据第四方面,通过分开地驱动组成相对线圈的两个相应的线圈,即使在相对线圈的线圈之一中感应出针对第一磁场的互感应的情况下,也可以防止因互感应而造成的电动势所引起的电流从一个线圈流动到另一线圈。因此,另一线圈不产生与互感应磁场(其与第一磁场反相)同相的磁场,仅产生第二磁场。

结果,因为可以防止从另一线圈产生抵消第一磁场的磁场,所以可以防止形成第一磁场大致变为零的区域,这使得可以避免在内置线圈中形成没有产生感应磁场的区域。

本发明的第五方面是一种医用磁感应及位置检测系统,该医用磁感应及位置检测系统包括:医用装置,该医用装置被插入患者体内,并且具有至少一个磁体和包括内置线圈的电路;第一磁场产生部,该第一磁场产生部用于产生第一磁场;磁场检测部,该磁场检测部用于检测由于第一磁场而在内置线圈中感应出的感应磁场;一组或更多组相对线圈,所述一组或更多组相对线圈用于产生要施加到磁体的第二磁场;以及开关部,该开关部电连接到相对线圈,其中,开关部仅在磁场检测部检测内置线圈的位置时进入断开状态。

根据上述第五方面,通过仅在磁场检测部正在检测内置线圈的位置时断开开关部,即使在相对线圈中感应出针对第一磁场的互感应的情况下,也可以防止形成互感应磁场。另一方面,通过在磁场检测部没有对内置线圈的位置进行检测时接通开关部,可以在相对线圈中产生第二磁场。

本发明的第六方面是一种医用磁感应及位置检测系统,该医用磁感应及位置检测系统包括:医用装置,该医用装置被插入患者体内,并且具有至少一个磁体和包括内置线圈的电路;第一磁场产生部,该第一磁场产生部用于产生第一磁场;磁场检测部,该磁场检测部用于检测由于第一磁场而在内置线圈中感应出的感应磁场;以及一组或更多组相对线圈,所述一组或更多组相对线圈用于产生要施加到磁体的第二磁场,其中,组成相对线圈的两个线圈被并联驱动。

根据上述第六方面,通过对组成相对线圈的两个线圈进行并联驱动,即使在两个线圈中的一个线圈中感应出针对第一磁场的互感应的情况下,也可以防止因互感应而造成的电动势所引起的电流从一个线圈流动到另一线圈。因此,另一线圈不产生与互感应磁场(其与第一磁场反相)同相的磁场,仅产生第二磁场。

结果,因为可以防止从另一线圈产生抵消第一磁场的磁场,所以可以防止形成第一磁场大致变为零的区域,并且可以防止在内置线圈中形成没有产生感应磁场的区域。

在上述第四方面到第六方面中,优选的是,在磁体所在的区域周围设置有至少三组相对线圈;第一磁场产生部包括磁场产生线圈,该磁场产生线圈设置在至少一组相对线圈中的一个线圈附近;磁场检测部包括磁场传感器,该磁场传感器设置在所述至少一组相对线圈中的另一线圈附近;并且在所述至少三组相对线圈中,至少一组相对线圈的中心轴的方向被设置为与由另两组相对线圈的中心轴形成的平面相交的方向。

根据这个方面,磁场产生线圈产生第一磁场,第一磁场在医用装置中包括的内置线圈中感应出感应磁场。磁场传感器检测从内置线圈产生的感应磁场,使用该感应磁场来检测具有该内置线圈的医用装置的位置和取向。此外,在所述至少三组相对线圈中产生的第二磁场施加到医用装置中包括的磁体,以控制该医用装置的位置和取向。因此,因为至少一组相对线圈的中心轴的方向被设置为对应于与由另两组相对线圈的中心轴形成的表面相交的方向,所以第二磁场的磁力线可以三维地取向为任何方向。由此,可以三维地控制具有该磁体的医用装置的位置和取向。

此外,通过从设置在相对线圈中的一个线圈附近的磁场产生线圈产生的第一磁场,即使在相对线圈中的所述一个线圈中感应出互感应的情况下,至少另一线圈不会产生与互感应磁场(其与第一磁场反相)同相的磁场,仅产生第二磁场。结果,因为可以防止从相对线圈中的另一线圈产生抵消第一磁场的磁场,所以可以防止形成第一磁场大致变为零的区域。

使用根据上述的本发明第四方面到第六方面的医用磁感应及位置检测系统,即使在组成相对线圈的两个线圈中的一个线圈中感应出互感应的情况下,因为可以防止在至少另一线圈中产生互感应磁场,所以可以防止形成抵消第一磁场并且磁场强度大致变为零的区域,这提供如下优点:可以防止用于位置检测的磁场强度下降。

本发明的第七方面是一种医用装置,该医用装置包括至少一个磁体和包括内置线圈的电路,所述内置线圈具有由磁性材料形成的芯,其中,通过设置在患者体外的磁位置检测单元来检测内置线圈的位置,并且其中,芯设置在由磁体产生的磁场没有形成磁饱和的位置处。

根据上述第七方面,通过内置线圈中使用由磁性材料制成的芯,可以改进内置线圈的性能,由此可以防止在对医用装置的位置检测期间出现问题。

例如,当向内置线圈施加用于位置检测的外部磁场(例如,交变磁场)时,与在内置线圈中不使用由磁性材料制成的芯的情况相比,内置线圈产生的磁场的强度较强。因此,位置检测单元可以更容易地检测到内置线圈产生的磁场,这防止在检测医用装置的位置时出现问题。

此外,因为将芯设置在由磁体产生的磁场在芯内部造成的磁通量密度没有磁饱和的位置处,所以可以防止内置线圈的性能劣化。

例如,当向内置线圈施加用于位置检测的交变磁场和用于位置控制的稳定磁场时,与将芯设置在内部磁通量密度磁饱和的位置处的情况相比,内置线圈响应于交变磁场的强度变化而产生的磁场强度的变化量更大。因此,位置检测单元可以更容易地检测到上述的磁场强度的变化量,可以防止在对医用装置的位置进行检测时出现问题。

在上述第七方面中,优选的是,芯具有如下形状:使得在芯中对于内置线圈的中心轴方向的去磁因数小于对于其他方向的去磁因数,并且磁体在芯位置处产生的磁场的方向是与中心轴方向相交的方向。

根据这个构造,因为芯具有使得内置线圈的中心轴方向的去磁因数小于其他方向的去磁因数并且在芯位置处的磁体的磁场方向与中心轴方向相交的形状,所以可以进一步改进内置线圈的性能。

更具体地说,因为磁体的磁场从不同于去磁因数最小的方向的方向作用于芯,所以可以增大使芯磁饱所需要的磁场强度。因此,即使将外部磁场施加到内置线圈,也可以防止芯磁饱和。

在上述第七方面中,优选的是,磁体在内置线圈的位置处产生的磁场的方向不同于芯中的去磁因数最小化的方向。

根据这个构造,因为磁体在内置线圈的位置处的磁场方向不同于芯中的去磁因数最小化的方向,所以磁体的磁场从不同于去磁因数最小的方向的方向作用于芯。因此,可以增大使该芯磁饱和所需要的磁场强度。由此,即使将外部磁场施加到内置线圈,也可以防止芯磁饱和。

在上述第七方面中,特别优选的是,磁体在内置线圈的位置处产生的磁场的方向与芯中的去磁因数最小化的方向之间形成的角度为约90度。

根据这个构造,因为磁体的在内置线圈的位置处的磁场方向与在芯中的去磁因数最小化的方向形成大致90度的角度,所以磁体的磁场从不同于去磁因数最小化的方向的方向作用于芯。

例如,当芯的形状为板形或杆形时,因为磁体的磁场从去磁因数最大化的方向作用于芯,所以可以最大化在芯内部产生的去磁场。因此,可以最小化芯内部的有效磁场,并且可以防止芯磁饱和。

在上述第七方面,优选的是,芯被定位为使得对于中心轴方向的去磁因数小于对于其他方向的去磁因数,并且磁体在内置线圈的位置处产生的磁场的方向与中心轴方向大致正交。

根据这个构造,因为将芯设置为使得对于中心轴方向的去磁因数小于对于其他方向的去磁因数,并且因为磁体的磁场方向与中心轴方向大致正交,所以磁体的磁场从不同于去磁因数最小化的方向的方向作用于芯。因此,可以防止芯内部产生的去磁场被最小化,并且可以防止芯内部的有效磁场被最大化,这使得能够防止芯的磁饱和。

优选的是,磁体按照如下方式设置在上述位置处:使得重心位于中心轴上,并且磁体的磁化方向与中心轴大致正交。

根据这个构造,因为磁体的重心位于中心轴上并且磁体的磁化方向与中心轴大致正交,所以磁体在芯的位置处的磁场方向与中心轴大致正交。

在上述第七方面中,优选的是,内置线圈设置在使得由于磁体的磁场而在芯的内部产生的磁通量密度是芯的饱和磁通量密度的1/2或更小的位置处。

根据这个构造,因为内置线圈设置在使得由于磁体的磁场而在芯的内部形成的磁通量密度是芯的饱和磁通量密度的一半或更小的位置处,所以可以抑制芯中的可逆磁化率的下降。因此,对于磁体的另一磁场来说,即使在芯的位置处形成了在对内置线圈的位置检测中使用的交变磁场,也可以防止在芯内部形成的磁通量密度超出饱和磁通量密度,并且可以防止内置线圈的性能的劣化。

在上述第七方面中,优选的是,电路为谐振电路。

根据这个方面,通过在对内置线圈的位置检测中例如使用频率等于该谐振电路的谐振频率的交变磁场,可以增加从内置线圈产生的磁场的强度等。更具体地说,可以减小电路的电功耗。

在上述第七方面中,内置线圈可以具有中空结构,芯可以形成为与中心轴方向垂直的剖面为大致C形,并且芯可以设置在中空结构的内部。

根据这个构造,通过将芯设置在内置线圈的中空结构的内部,与没有施加磁场的情况相比,可以增加在内置线圈中产生的磁场的强度。更具体地说,内置线圈可以接收具有较弱强度的磁场。

此外,通过将芯的剖面形状大致形成为字母C的形状,可以防止在芯的剖面中产生大致按环的形式流动的屏蔽电流(涡流)。因此,可以防止因屏蔽电流而屏蔽磁场,并且可以防止在内置线圈中产生磁场或者抑制对磁场的接收。

因为芯的剖面为大致C形,所以与剖面形状为实心的芯相比,可以减小使用的磁性材料的体积。

在芯内部可以设置其他元件,这使得可以减小医用装置的尺寸。

例如,通过减小芯的大致C形剖面中的径向的厚度以形成薄层,可以抑制产生沿层的厚度方向流动的涡流。或者,即使出现涡流,也可以将涡流抑制到使其不会影响对内置线圈的位置检测的程度。

例如,当磁体的磁场作用于芯的方向为芯的大致C形剖面中的厚度方向时,因为对于芯的厚度方向的去磁因数较大,所以形成在芯内部的去磁场得到最大化。因此,可以最小化芯内部的有效磁场,并且可以防止芯磁饱和。

在上述第七方面中,在其中内置线圈设置在使得由磁体的磁场在芯内部产生的磁通量密度为芯的饱和磁通量密度的一半或更小的位置处的结构中,医用装置可以包括生物信息获取单元,该生物信息获取单元用于获取关于患者身体内部的信息,磁体可以具有中空结构,并且生物信息获取单元的至少一部分可以设置在中空结构的内部。

根据这个构造,因为生物信息获取单元设置在中空结构的内部,所以可以减小医用装置的尺寸。

在上述第七方面中,优选的是,磁体是由多个磁片的组件形成的,并且在所述多个磁片之间设置有绝缘体。

根据这个构造,因为在所述多个磁片之间设置有绝缘体,所以可以使得屏蔽电流难以在由多个磁片的组件形成的磁体中流动。因此,可以防止内置线圈产生或接收的磁场被在磁体中流动的屏蔽电流屏蔽。更具体地说,可以减小屏蔽电流对内置线圈的影响,这使得可以防止内置线圈的性能劣化。

在上述第七方面中,所述磁体被优选地形成为大致板形。

根据这个构造,因为所述多个磁片形成为板形,所以可以容易地通过层叠所述多个磁片来形成其组件。此外,因为将它们形成为板形,所以可以容易地在这些磁片之间夹入绝缘体。

在上述第七方面中,可以使得形成为大致板形的所述多个磁片沿其厚度方向极化。

根据这个构造,通过使所述多个磁片沿其厚度方向发生极化,因为所述多个磁片吸引在一起,所以更容易层叠这些磁片,并且容易构成作为其组件的磁体。

在上述第七方面中,可以使得形成为大致板形的所述多个磁片按沿其表面的方向极化。

根据这个构造,因为使所述多个磁片按沿其表面的方向极化,所以与使所述多个磁片沿其厚度方向极化的情况相比,可以加强所述多个磁片的磁力,并且可以加强作为其组件的磁体的磁力。

在上述第七方面中,作为所述多个磁片的组件的磁体优选地形成为大致圆柱状。

根据这个构造,例如,可以将医用装置的其他构成元件设置在上述的大致圆柱状磁体内部,这使得可以减小该医用装置的尺寸。

在上述第七方面中,可以设置有两个内置线圈,并且可以将这两个内置线圈定位为使得其各自的中心轴对准,此外,可以将它们定位为在其中心轴方向上分离,并且可以将磁体设置在这两个内置线圈之间。

根据这个构造,因为磁体设置在医用装置中央的附近,所以例如当在对医用装置的驱动控制中使用磁体时,与磁体被设置为朝向医用装置的一端的情况相比,可以有利于对医用装置的驱动。

在上述情况中,可以设置两个磁体,可以将这两个磁体定位为在内置线圈的中心轴方向上分离,并且可以将内置线圈设置在这两个磁体之间。

根据这个构造,因为可以将内置线圈设置在医用装置中央的附近,所以与将内置线圈设置为朝向医用装置的一端的情况相比,可以更准确地检测医用装置的位置。

在上述第七方面中,优选的是,医用装置为放入患者体内的囊状医用装置,并且具有用于获取关于患者身体内部的信息的生物信息获取单元。

根据这个构造,因为医用装置具有生物信息获取单元并且被放入患者体内,所以这种医用装置可以获取关于患者身体内部的信息。

在上述第七方面中,在医用装置为囊状医用装置的情况下,内置线圈可以具有中空结构,生物信息获取单元的至少一部分可以设置在该中空结构的内部。

根据这个构造,因为生物信息获取单元的至少一部分设置在内置线圈的中空结构的内部,所以可以减小医用装置的尺寸,并且可以更容易地将医用装置插入患者体内。

在上述第七方面中,在医用装置为囊状医用装置的情况下,可以设置有用于驱动电路和生物信息获取单元中的至少一个的电源单元,内置线圈可以具有中空结构,电源单元可以设置在该中空结构的内部。

根据这个构造,因为电源单元设置在内置线圈的中空结构的内部,所以可以减小医用装置的尺寸。

在上述第七方面中,在医用装置为囊状医用装置的情况下,可以设置有用于驱动电路和生物信息获取单元中的至少一个的电源单元,磁体可以具有中空结构,电源单元可以设置在该中空结构的内部。

根据这个构造,因为电源单元设置在磁体的中空结构的内部,所以可以减小医用装置的尺寸。

本发明的第八方面是一种医用磁感应及位置检测系统,该医用磁感应及位置检测系统包括:根据上述第七方面的医用装置;和位置检测单元,该位置检测单元包括用于在内置线圈中产生感应磁场的驱动部、以及用于检测由内置线圈产生的感应磁场的磁场检测部,其中,电路是产生从内置线圈指向位置检测单元的磁场的磁场产生电路。

根据本发明的第八方面,位置检测单元可以基于驱动部在内置线圈中产生的感应磁场来检测内置线圈的位置。

更具体地说,使用设置在位置检测单元中的磁场检测部来检测产生的磁场使得可以基于有关检测到的磁场等的信息来估计内置线圈的位置。

在上述第八方面中,优选的是,位置检测单元的驱动部在内置线圈所在的区域中形成磁场,磁场产生单元通过内置线圈接收位置检测单元产生的磁场,并从内置线圈产生感应磁场。

根据这个构造,位置检测单元可以基于从磁场产生单元的内置线圈产生的感应磁场来检测内置线圈的位置。

更具体地说,可以通过使用位置检测单元的磁场检测部检测在内置线圈中产生的感应磁场来估计内置线圈的位置。

在上述第八方面中,位置检测单元优选地包括多个磁场检测部、和基于所述多个磁场检测部的输出来计算内置线圈的位置和取向中的至少一个的计算装置。

根据这个构造,因为计算装置基于所述多个磁场检测部的输出来计算内置线圈的位置和取向中的至少一个,所以可以估计内置线圈的位置和取向中的至少一个。

因为存在多个磁场检测部,所以在对内置线圈的位置和取向进行计算时还使用多个输出。例如,通过对在计算装置中的计算时使用的输出进行选择,可以增加对内置线圈的位置和取向的计算结果的精度。

本发明的第九方面是一种医用磁感应及位置检测系统,该医用磁感应及位置检测系统包括:根据上述的第七方面的医用装置;和位置检测单元,该位置检测单元包括驱动部,该驱动部用于在内置线圈所在的区域中从多个方向形成磁场,其中,电路包括用于接收位置检测单元形成的所述多个磁场的内部磁场检测部、和用于向位置检测单元发送关于接收到的所述多个磁场的信息的位置信息发送单元。

根据本发明第九方面,位置检测单元可以基于从位置信息发送单元发送来的多条磁场信息而检测内置线圈的位置。

更具体地说,内部磁场检测部接收由驱动部从多个方向形成的磁场,通过位置信息发送部将从内部磁场检测部输出的多条磁场信息发送到位置检测单元。位置检测单元可以基于所述多条磁场信息来估计内置线圈的位置。

在上述第九方面中,位置检测单元优选地包括计算装置,该计算装置用于基于在内部磁场检测部处的关于接收到的所述多个磁场的信息来计算内置线圈的位置和取向中的至少一个。

根据这个构造,因为计算装置可以基于通过内部磁场检测部检测到的磁场信息来计算内置线圈的位置和取向中的至少一个,所以可以估计内置线圈的位置和取向中的至少一个。

因为存在多条磁场信息,所以可以例如通过对计算装置中的计算所使用的磁场信息进行选择来增加对内置线圈的位置和取向的计算结果的精度。

在具有计算装置的上述第八方面或上述第九方面中,优选的是,医用磁感应及位置检测系统包括:引导磁场产生单元,该引导磁场产生单元设置在医用装置的工作区域的外部,用于产生要施加到磁体的引导磁场;和磁场方向控制单元,该磁场方向控制单元用于控制引导磁场产生单元来控制引导磁场的方向。

根据这个构造,通过设置引导磁场产生单元和磁场方向控制单元,医用磁感应及位置检测系统可以产生引导磁场并且可以控制引导磁场的方向。因此,可以将包括受引导磁场控制的磁体的医用装置引导到预定位置。

根据上述的本发明第七到第九方面的医用装置以及医用磁感应及位置检测系统,可以通过在内置线圈中使用由磁性材料制成的芯来改进内置线圈的性能。因此,提供了如下优点:磁位置检测系统可以更有效地工作,并且可以防止在医用装置的位置检测期间出现问题。

此外,因为将芯设置使得因磁体产生的磁场而在芯内部造成的磁通量密度没有磁饱和的位置处,所以提供了如下优点:磁位置检测系统可以更有效地工作,并且可以防止内置线圈的性能的下降。

附图说明

图1是根据本发明第一实施例的医用磁感应及位置检测系统的示意图。

图2是图1中的医用磁感应及位置检测系统的立体图。

图3是示出图1中的医用磁感应及位置检测系统的剖面的示意图。

图4是示出图1中的感测线圈(sense-coil)接收电路的电路结构的示意图。

图5是示出图1中的囊状内窥镜的构造的示意图。

图6是示出根据本实施例的怎样确定计算频率和用于检测囊状内窥镜的位置和取向的过程的流程图。

图7是示出根据本实施例的怎样确定计算频率和用于检测囊状内窥镜的位置和取向的过程的流程图。

图8是示出谐振电路的频率特性的曲线图。

图9是示出驱动线圈和感测线圈的另一位置关系的图。

图10是示出驱动线圈和感测线圈的另一位置关系的图。

图11是示出驱动线圈和磁感应线圈的位置关系的图。

图12是示出驱动线圈与感测线圈之间的位置关系的图。

图13A是描绘施加到驱动线圈的脉冲驱动电压的图。图13B是描绘脉冲磁场的图。

图14是根据本发明第二实施例的医用磁感应及位置检测系统的示意图。

图15是示出图14中的囊状内窥镜的构造的示意图。

图16是示出用于确定磁感应线圈的频率特性、直到存储在存储器部134A中为止的过程的流程图。

图17是示出用于检测囊状内窥镜的位置和取向的过程的流程图。

图18是示出用于检测囊状内窥镜的位置和取向的过程的流程图。

图19是示出根据本发明第三实施例的驱动线圈和感测线圈的位置关系的图。

图20是示出医用磁感应及位置检测系统的剖面的示意图。

图21示出了根据本发明第四实施例的驱动线圈和感测线圈。

图22是示出根据本发明第四实施例的变型例的驱动线圈与感测线圈之间的位置关系的图。

图23示出了根据本发明第五实施例的医用磁感应及位置检测系统的概要图。

图24是示出图23中的驱动线圈单元、感测线圈等之间的位置关系的图。

图25示出了图24中的驱动线圈单元的构造的概要图。

图26是示出根据本实施例的用于检测囊状内窥镜的位置和取向的过程的流程图。

图27是示出根据本实施例的用于检测囊状内窥镜的位置和取向的过程的流程图。

图28是示出根据本实施例的用于检测囊状内窥镜的位置和取向的过程的流程图。

图29是根据本发明的囊状内窥镜的位置检测系统的概要图。

图30是示意性地示出根据本发明第一变型例的医用磁感应及位置检测系统的构造的图。

图31是描绘图30中的引导磁场产生线圈的构造的连接图。

图32是示出图30中的医用磁感应及位置检测系统的另一变型例的图。

图33是用于说明图30中的医用磁感应及位置检测系统中形成的磁场强度的图。

图34是示意性地示出根据本发明第二变型例的医用磁感应及位置检测系统的构造的图。

图35是示出图34中的引导磁场产生线圈的构造的连接图。

图36是示出图34中的医用磁感应及位置检测系统的另一变型例的图。

图37是示意性地示出根据本发明第三变型例的医用磁感应及位置检测系统的图。

图38是用于说明图37中的引导磁场产生线圈的构造的连接图。

图39是示出图37中的医用磁感应及位置检测系统的另一变型例的图。

图40是示意性地示出根据本发明第四变型例的医用磁感应及位置检测系统的构造的图。

图41是示意性地描绘图40中的引导磁场产生线圈的构造的框图。

图42是描绘常规医用磁感应及位置检测系统中形成的磁场强度的图。

图43是根据本发明第六实施例的医用磁感应及位置检测系统的示意图。

图44是医用磁感应及位置检测系统的立体图。

图45是示出医用磁感应及位置检测系统的剖面的示意图。

图46是示出图43中的感测线圈接收电路的电路结构的示意图。

图47是示出图43中的囊状内窥镜的构造的示意图。

图48A是图47中的囊状内窥镜中的引导磁体的从端部观看时的图。图48B是引导磁体的从侧面观看时的图。

图49是描绘图47中的囊状内窥镜中的感应磁场产生部的图。

图50是示出图47中的囊状内窥镜中的感应磁场产生部的频率特性的曲线图。

图51是示出驱动线圈和磁感应线圈的位置关系的图。

图52是示出驱动线圈和感测线圈的位置关系的图。

图53是示出驱动线圈和感测线圈的另一位置关系的图。

图54是示出驱动线圈和感测线圈的另一位置关系的图。

图55是描绘实际上使用的实验装置的概要的图。

图56A是描绘磁感应线圈和电池的位置关系的图。图56B是描绘磁感应线圈、电池和引导磁体的位置关系的图。

图57是示出图55中的实验装置中的感测线圈的增益变化与相位变化之间的关系的图。

图58是示出图55中的实验装置中的感测线圈的增益变化与相位变化之间的关系的图。

图59是示出图55中的实验装置中的磁感应线圈与引导磁体的位置关系的图。

图60A是描绘图55中的实验装置中使用的实心芯引导磁体的构造的正面图。图60B是描绘图55中的实验装置中使用的实心芯引导磁体的构造的侧面图。

图61A是描绘图55中的实验装置中使用的中空引导磁体的构造的侧面图。图61B是大中空引导磁体的侧面图。

图62是示出由五个单独磁片形成的引导磁体中的感测线圈的频率特性的图。

图63是示出在引导磁体由五个单独磁片形成并且在这些单独磁片之间夹有绝缘体的情况下的感测线圈的频率特性的图。

图64是示出在引导磁体由三个单独磁片形成并且在这些单独磁片之间夹有绝缘体的情况下的感测线圈的频率特性的图。

图65是示出在引导磁体由单个磁片形成的情况下的感测线圈的频率特性的图。

图66是示出在引导磁体与磁感应线圈之间的距离为0mm的情况下感测线圈的频率特性的图。

图67是示出在引导磁体与磁感应线圈之间的距离为5mm的情况下感测线圈的频率特性的图。

图68是示出在引导磁体与磁感应线圈之间的距离为10mm的情况下感测线圈的频率特性的图。

图69是示出在中空引导磁体中的感测线圈的频率特性的图。

图70是示出在大中空引导磁体中的感测线圈的频率特性的图。

图71是示出引导磁体与磁感应线圈之间的距离与磁感应线圈的输出振荡的幅度之间的关系的图。

图72是示出用于测量引导磁体产生的磁场强度的装置的概要图的图。

图73是示出在磁感应线圈的中央由引导磁体产生的磁场的强度与磁感应线圈的输出振荡的强度之间的关系的图。

图74是示出图49中的坡莫合金层的磁滞曲线的图。

图75是示出图49中的坡莫合金层中的可逆磁化率的曲线图。

图76是描绘坡莫合金层中的有效磁场的强度的示意图。

图77是描绘坡莫合金层中的去磁因数的强度的示意图。

图78是示出根据本发明第二实施例的囊状内窥镜的构造的图。

图79A是示出图78所示的囊状内窥镜中的引导磁体的构造的正面图。图79B是示出该引导磁体的构造的侧面图。

图80是示出根据本发明第八实施例的囊状内窥镜的构造的图。

图81是示出根据本发明第九实施例的囊状内窥镜的构造的图。

图82是示出根据本发明第十实施例的囊状内窥镜的构造的图。

图83A是示出图82所示的囊状内窥镜中的引导磁体的构造的正面图。图83B是示出引导磁体的构造的侧面图。

图84是示出根据本发明第十一实施例的囊状内窥镜的构造的图。

图85是示出根据本发明第十二实施例的位置检测单元中的驱动线圈和感测线圈的位置的示意图。

图86是示出医用磁感应及位置检测系统的剖面的示意图。

图87是示出根据本发明第十三实施例的位置检测单元中的驱动线圈和感测线圈的位置关系的图。

图88是示出根据本发明第十三实施例的变型例的位置检测单元中的驱动线圈和感测线圈的位置关系的示意图。

图89是根据本发明第十四实施例的医用磁感应及位置检测系统的示意图。

图90是根据本发明第十五实施例的医用磁感应及位置检测系统的示意图。

图91是示出用做磁场产生单元的电磁体系统的构造的图。

具体实施方式

第一到第五实施例

(医用磁感应及位置检测系统)

第一实施例

现在,参照图1到13B对根据本发明的医用磁感应及位置检测系统的第一实施例进行说明。

图1是示意性地示出根据该实施例的医用磁感应及位置检测系统的图。图2是医用磁感应及位置检测系统的立体图。

如图1和2所示,医用磁感应及位置检测系统10主要由以下部件形成:囊状内窥镜(医用装置)20,其以口服或肛入方式导入患者1的体腔中,以对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测器、计算装置)50,其检测囊状内窥镜20的位置;磁感应装置70,其基于检测到的囊状内窥镜20的位置和来自操作员的指令引导囊状内窥镜20;以及图像显示装置80,其显示从该囊状内窥镜20发送的图像信号。

如图1所示,磁感应装置70主要由以下部件形成:三轴引导磁场产生单元(引导磁场产生单元、电磁体)71,其产生用于驱动囊状内窥镜20的平行磁场;赫尔姆霍茨线圈驱动器72,其控制向三轴引导磁场产生单元71提供的电流的增益;旋转磁场控制电路(磁场取向控制单元)73,其控制用于驱动囊状内窥镜20的平行磁场的方向;以及输入装置74,其向旋转磁场控制电路73输出操作员输入的囊状内窥镜20的移动方向。

尽管在这个实施例中采用假定满足赫尔姆霍茨线圈条件的三轴引导磁场产生单元71,但是三轴引导磁场产生单元71不必严格地满足赫尔姆霍茨线圈条件。例如,如图1所示,线圈可以为大致矩形,而非圆形。此外,只要实现这个实施例的功能,相对线圈之间的间隙不满足赫尔姆霍茨线圈条件也是可接受的。

如图1和2所示,三轴引导磁场产生单元71形成为大致矩形形状。三轴引导磁场产生单元71包括三对相互面对的赫尔姆霍茨线圈(电磁体、相对线圈)71X、71Y和71Z,每一对赫尔姆霍茨线圈71X、71Y和71Z都设置为大致正交于图1中的X、Y和Z轴。将设置为大致正交于X、Y和Z轴的赫尔姆霍茨线圈分别表示为赫尔姆霍茨线圈71X、71Y和71Z。

将赫尔姆霍茨线圈71X、71Y和71Z设置为在其内部形成大致矩形的空间S。如图1所示,空间S用作囊状内窥镜20的工作空间,并且如图2所示,空间S是患者1所处的空间。

赫尔姆霍茨线圈驱动器72包括分别控制赫尔姆霍茨线圈71X、71Y和71Z的赫尔姆霍茨线圈驱动器72X、72Y和72Z。

将操作员从输入装置74输入的针对囊状内窥镜20的移动方向指令与稍后说明的来自位置检测装置的表示囊状内窥镜20当前指向的方向(囊状内窥镜20的旋转轴(纵轴)R的方向)的数据一起输入到旋转磁场控制电路73。接着,从旋转磁场控制电路73输出用于控制赫尔姆霍茨线圈驱动器72X、72Y和72Z的信号,囊状内窥镜20的旋转相位数据输出到图像显示装置80。

将用于通过移动操纵杆来指定囊状内窥镜20的移动方向的输入装置用作输入装置74。

如上所述,输入装置74可以使用操纵杆型装置,或者可以使用另一类型的输入装置,如通过推动移动方向按钮来指定移动的方向的输入装置。

如图1所示,位置检测单元50主要由以下部件形成:驱动线圈(驱动线圈)51,其在囊状内窥镜20中的磁感应线圈(后面要说明)中产生感应磁场;感测线圈(磁场传感器、磁场检测部)52,其检测在磁感应线圈中产生的感应磁场;以及位置检测装置(位置分析单元、磁场频率改变部、驱动线圈控制部)50A,其基于感测线圈52检测到的感应磁场来计算囊状内窥镜20的位置,并且控制由驱动线圈51形成的交变磁场。

位置检测装置50A设置有计算频率确定部(频率确定部)50B,以接收来自后面要说明的感测线圈接收电路的信号。

在位置检测装置50A与驱动线圈51之间设置有以下部件:信号发生电路53,其基于来自位置检测装置50A的输出而产生AC电流;驱动线圈驱动器54,其基于来自位置检测装置50A的输出而放大从信号发生电路53输入的AC电流;以及驱动线圈选择器55,其将AC电流提供给基于来自位置检测装置50A的输出而选择的驱动线圈51。

在感测线圈52与位置检测装置50A之间设置有以下部件:感测线圈选择器(磁场传感器选择单元)56,其基于来自位置检测装置50A的输出,从感测线圈52中选择包括囊状内窥镜20的位置信息等的AC电流;和感测线圈接收电路57,其从通过感测线圈选择器56的AC电流提取幅值,并将该幅值输出到位置检测装置50A。

图3示出医用磁感应及位置检测系统的剖面的示意图。

在此,如图1和3所示,驱动线圈51有角度地位于由赫尔姆霍茨线圈71X、71Y和71Z形成的大致矩形工作空间的四个上部(在Z轴的正向上)角处。驱动线圈51形成连接方形赫尔姆霍茨线圈71X、71Y和71Z的角的大致三角形线圈。通过按这种方式将驱动线圈51设置在顶部,可以防止驱动线圈51与患者1之间发生干扰。

如上所述,驱动线圈51可以为大致三角形线圈,或者可以使用多种形状的线圈,如圆形线圈等。

感测线圈52被形成为空气芯线圈,由三个平面线圈支承部件58支承在赫尔姆霍茨线圈71X、71Y和71Z的内侧,这三个平面线圈支承部件58被设置在面对驱动线圈51的位置以及沿Y轴方向彼此相对的位置,囊状内窥镜20的工作空间位于其间。在每一个线圈支承部件58中按矩阵形式排列有9个感测线圈52,由此在位置检测单元50中设置有总计27个感测线圈52。

可以自由排列感测线圈52。例如,可以将感测线圈52设置在与赫尔姆霍茨线圈71X、71Y和71Z相同的表面上,或者可以将其设置在赫尔姆霍茨线圈71X、71Y和71Z的外部。

图4是示出感测线圈接收电路57的电路结构的示意图。

如图4所示,感测线圈接收电路57由以下部件形成:高通滤波器(HPF)59,其去除包括囊状内窥镜20的位置信息的输入AC电压中的低频分量;前置放大器60,其放大所述AC电压;带通滤波器(BPF、频带限制部)61,其去除放大的AC电压中包括的高频;放大器(AMP)62,其放大已经去除了高频的AC电压;均方根检测电路(真实RMS转换器)63,其检测AC电压的振幅,并且提取并输出幅值;A/D转换器64,其将该幅值转换为数字信号;以及存储器65,其用于临时地存储数字化的幅值。

在此,高通滤波器(HPF)59还用于消除由于赫尔姆霍茨线圈71X、71Y和71Z中出现的旋转磁场而感应出的并且被感测线圈52检测到的低频信号。这样,位置检测单元50可以在操作磁感应装置70的同时正常地工作。

高通滤波器59由以下部件形成:设置在从感测线圈52延伸的一对导线66A中的一对电容器68;连接到所述一对导线66A并且大致在其中央处接地的导线66B;以及导线66B中的接地点处于其间地彼此相对的电阻器67。在所述一对导线66A中分别设置有前置放大器60,从前置放大器60输出的AC电压输入到单个带通滤波器61。存储器65临时存储从9个感测线圈52获得的幅值,并且将存储的幅值输出到位置检测装置50A。

除了上述元件以外,还可以设置能够去除共模噪声的共模滤波器。

如上所述,带通滤波器61可以去除AC电压的高频分量;然而,频带限制部也可以是执行傅立叶变换的部件。

如上所述,可以使用均方根检测电路63来提取AC电压的幅值,可以通过使用整流电路来平滑磁场信息并检测电压从而检测幅值,或者可以使用检测AC电压中的峰值的峰值检测电路来检测幅值。

关于检测到的AC电压的波形,对于施加到驱动线圈51的波形的相位随着磁感应线圈42的存在和位置而变化。可以使用锁定放大器等来检测这种相位变化。

如图1所示,图像显示装置80由以下部件形成:图像接收电路81,其接收从囊状内窥镜20发送来的图像;和显示部(显示单元、图像控制单元)82,其基于接收的图像信号以及来自旋转磁场控制电路73的信号而显示图像。

图5是示出囊状内窥镜的构造的示意图。

如图5所示,囊状内窥镜20主要由以下部件形成:外壳21,其在其内部容纳了多种装置;图像形成部(生物信息获取单元)30,其形成患者体腔中的通道的内表面的图像;电池39,其用于驱动图像形成部30;感应磁场产生部40,其通过上述驱动线圈51产生感应磁场;以及引导磁体(永磁体)45,其通过接收在磁感应装置70中出现的磁场来驱动囊状内窥镜20。

外壳21由以下部件形成:红外线透射圆柱形囊状主体(下文中简写为主体)22,其中心轴限定了囊状内窥镜20的旋转轴(纵轴)R;透明半球状前端部23,其覆盖主体22的前端部;以及半球状后端部24,其覆盖主体22的后端部,从而形成具有水密结构的密封囊状容器。

在外壳21的主体的外周面上设置有螺旋部(螺旋机构)25,在该螺旋部25中围绕旋转轴R按螺旋形式缠绕有剖面为圆形的导线。

当引导磁体接收到磁感应装置70中产生的旋转磁场而旋转时,该螺旋部也旋转,以在患者体腔中的通道中沿旋转轴R的方向引导囊状内窥镜20。

图像形成部30主要由以下部件形成:板36A,其被设置为与旋转轴R大致正交;图像传感器31,其被设置在板36A的前端部23侧的表面上;透镜组32,其将患者体腔内的通道的内表面的像形成在图像传感器31上;LED(发光二极管)33,其照亮体腔内的通道的内表面;信号处理部34,其被设置在板36A的后端部24侧的表面上;以及无线电装置35,其向图像显示装置80发送图像信号。

信号处理部34经由板36A、板36B、36C和36D以及柔性板37A、37B和37C而电连接到电池39,经由板36A而电连接到图像传感器31,并且经由板36A、柔性板37A以及支承部件38而电连接到LED 33。此外,信号处理部34压缩图像传感器31获取的图像信号,对其进行临时存储(存储器),并且将经压缩的图像信号从无线电装置35向外部发送,此外,它基于来自后面要说明的开关部46的信号来控制图像传感器31和LED 33的开/关状态。

图像传感器31将经由前端部23和透镜组32形成的像转换为电信号(图像信号)并且将它输出到信号处理部34。例如可以将CMOS(互补型金属氧化物半导体)器件或CCD(电荷耦合器件)用作这种图像传感器31。

此外,在支承部件38上,围绕旋转轴R沿周向按其间设置有间隙的方式从板36A朝向前端部23地设置有多个LED 33。

在信号处理部34的后端部24侧设置有引导磁体45。引导磁体45被设置或极化得使其磁化方向沿着与旋转轴R正交的方向(例如,沿图5中的垂直方向)。

在引导磁体45的后端部24侧设置有设置在板36B上的开关部46。开关部46具有红外线传感器47,经由板36B和柔性板37A而电连接到信号处理部34,并且经由板36B、36C和36D以及柔性板37B和37C而电连接到电池39。

此外,按规则的间隔围绕旋转轴R沿周向设置有多个开关部46,红外线传感器47被设置为面对径向的外侧。在这个实施例中,已经描述了在其中设置有4个开关部46的示例,但是开关部46的数量不限于4个,而是可以设置任何数量。

在开关部46的后端部24侧,电池39被设置为由板36C和36夹住。

在后端部24侧的板36D的表面上设置有无线电装置35。无线电装置35经由板36A、36B、36C和36D以及柔性板37A、37B和37C而电连接到信号处理部34。

在无线电装置35的后端部24侧设置有感应磁场产生部40。该感应磁场产生部40由以下部件形成:芯部件41,其由形成为圆柱形的铁氧体制成,其中心轴与旋转轴R大致相同;磁感应线圈42,其设置在芯部件41的外周部分;以及电容器(该图中未示出),其电连接到磁感应线圈42,并形成谐振电路43。

电容器的电容是根据磁感应线圈42的电感来确定的,以使得谐振电路43的谐振频率接近于由位置检测单元50的驱动线圈51产生的交变磁场的频率。此外,可以根据谐振电路43的谐振频率来确定由驱动线圈51产生的交变磁场的频率。

除了铁氧体以外,磁性材料也适用于芯部件;铁、镍、坡莫合金、钴等也可以用于芯部件。

接下来,对具有上述构造的医用磁感应及位置检测系统10的操作进行说明。

首先,对医用磁感应及位置检测系统10的操作的概况进行说明。

如图1和2所示,囊状内窥镜20以口服或肛入方式插入躺在位置检测单元50和磁感应装置70内的患者1的体腔中。通过位置检测单元50检测插入的囊状内窥镜20的位置,并且通过磁感应装置70将它引导到患者1的体腔中的通道内的感染区附近。囊状内窥镜20在被引导到感染区以及在感染区附近时,形成体腔中的通道的内表面的图像。接着,将针对体腔内部通道的形成了图像的内表面的数据和针对感染区附近的数据发送到图像显示装置80。图像显示装置80在显示部82上显示发送来的图像。

现在,对获得用于检测囊状内窥镜20的位置和方向的计算频率的过程以及检测囊状内窥镜20的位置和方向的过程进行说明。

图6和7是例示获得计算频率的过程以及检测囊状内窥镜20的位置和方向的过程的流程图。

首先,如图6所示,执行对位置检测单元50的校准(步骤1;预备测量步骤)。更具体地说,测量在空间S中没有设置囊状内窥镜20时感测线圈52的输出,即,由于驱动线圈51形成的交变磁场的作用而导致的感测线圈52的输出。

图1中例示了形成交变磁场的具体过程。即,信号发生电路53产生AC信号,该AC信号接着输出到驱动线圈驱动器54。驱动线圈驱动器54对该AC信号进行功率放大,以经由驱动线圈选择器55向驱动线圈51提供AC电流。所产生的AC电流的频率处于从几kHz到100kHz的频率范围内,并且该频率在上述范围内随时间而变化(摆动),从而包括后面要说明的谐振频率。可以通过根据磁感应线圈42、电容器等的特性值进行估计来获得在这个阶段的谐振频率。此外,如下所述,可以将这个频率设置为任何值。

摆动范围不限于上述范围;它可以是更窄的范围或者可以是更宽的范围,并没有特别限制。

在驱动线圈驱动器54中基于来自位置检测装置50A的指令而放大AC信号,并将其输出到驱动线圈选择器55作为AC电流。在驱动线圈选择器55中,将放大的AC电流提供给由位置检测装置50A选择的驱动线圈51。接着,提供给驱动线圈51的AC电流在囊状内窥镜20的工作空间S中产生交变磁场。

如图4所示,形成的交变磁场在感测线圈52中产生感应电动势,从而在感测线圈52中引起AC电压。该AC电压经由感测线圈选择器56输入到感测线圈接收电路57,在感测线圈接收电路57中提取AC电压的幅值。

如图4所示,首先,通过高通滤波器59去除输入到感测线圈接收电路57的AC电压中包括的低频分量,接着,通过前置放大器60放大该AC电压。此后,通过带通滤波器61去除高频,并且通过放大器62将AC电压放大。通过均方根检测电路63提取已经按这种方式去除了不想要的分量的AC电压的幅值。通过A/D转换器64将提取的幅值转换为数字信号,并将该数字信号存储在存储器65中。此时,对于每一次操作,将带通滤波器61的通过频率调节为交变磁场的频率。

存储器65例如存储与其中信号发生电路53中产生的信号摆动得接近谐振电路43的谐振频率的一个时段对应的幅值,并且将对于一个时段的幅值一次输出给位置检测装置50A的频率确定部50B。将此时的输出的值表示为Vc(f,N),其中,Vc为交变磁场的频率f和感测线圈的编号N的函数。

接下来,将囊状内窥镜20放入空间S(步骤2)中。放置囊状内窥镜20的过程没有进行具体限制。例如,如果在空间S中设置有用于支承囊状内窥镜的支架,则可以将囊状内窥镜20放置在该支架上。

此外,该支架可以直接支承囊状内窥镜20,或者可以支承容纳在封装(图中未示出)中的囊状内窥镜。这种构造是卫生的。

接着,对囊状内窥镜20中安装的磁感应线圈42的频率特性进行测量(步骤3;测量步骤)。更具体地说,按照与步骤1相同的方式,使驱动线圈51产生频率在预定频带内变化的交变磁场,并且在频率改变(摆动)的同时,对该交变磁场和磁感应线圈42感应出的磁场所导致的感测线圈52的输出进行测量。这时,将该输出表示为V0(f,N),其中,f是交变磁场的频率,而N是感测线圈52的编号。

因为磁感应线圈42和电容器一起形成了谐振电路43,所以当交变磁场的周期对应于谐振电路43的谐振频率时,在谐振电路43(磁感应线圈42)中流动的感应电流增大,并且产生的感应磁场变强。此外,因为在磁感应线圈42的中央设置有由电介质铁氧体(dielectric ferrite)构成的芯部件41,所以感应磁场更容易集中在芯部件41中,这使得产生的感应磁场甚至更强。

此后,频率确定部50B计算在步骤1中测量出的感测线圈52的输出与在步骤3中测量出的感测线圈52的输出之间的差,基于计算出的差获得用于检测囊状内窥镜20的位置和取向而使用的计算频率(步骤4;频率确定步骤)。

图8是描绘磁感应线圈42的频率特性的图,并且例示了与交变磁场的频率变化相关的感测线圈52的输出增益和相位的变化。这个曲线图中的增益V(f,N)表示为V(f,N)=V0(f,N)-Vc(f,N)。即,增益V(f,N)由在各个频率下步骤1中的测量结果与步骤3中的测量结果之间的差来表示。

如图8所示,作为感测线圈52的输出的AC电压的幅值随着由磁感应线圈42产生的交变磁场的频率特性(即与谐振电路43的谐振频率的关系)而很大地变化。图8在横轴上示出了交变磁场的频率,在纵轴上示出了在谐振电路43中流动的AC电压的增益(dBm)和相位(度)的变化。在图8中,示出了由实线表示的增益变化在小于谐振频率的频率处出现最大值,在谐振频率处为零,在高于谐振频率的频率处出现最小值。此外,它示出了由虚线表示的相位变化在谐振频率处下降最多。在此,通过使用网络分析器、阻抗分析器等来测量谐振电路的阻抗特性,已经确认了谐振电路43的谐振频率对应于引起最大相位滞后的频率并且对应于引起增益过0的频率。

根据测量条件,可能存在增益在比谐振频率低的频率处出现最小值并且在比谐振频率高的频率处出现最大值的情况,以及相位在谐振频率处达到峰值的情况。

更具体地说,获得上述感测线圈52的增益的变化出现最大值和最小值的频率,并且将这两个频率用作计算频率:较低的频率用作低频侧计算频率,较高的频率用作高频侧计算频率。如图8所示,增益变化分别在大约18kHz和大约20.5kHz的频率处出现最大值和最小值。前者是低频侧计算频率,而后者是高频侧计算频率。

按这种方式,使用步骤1中的感测线圈52的输出与步骤2中的感测线圈52的输出之间的差,通过消除不利的影响(例如,与感测线圈接收电路57的温度特性有关的输出值的偏移),使得可以获得高精度计算频率。

在此,将针对所有感测线圈的Vc(fLOW,N)、Vc(fHIGH,N),(N:感测线圈的编号1、2、3、…)存储为基准值,其中,fLOW表示低频侧计算频率,fHIGH表示高频侧计算频率。在步骤5和随后的步骤中,通过下面的计算公式来计算针对用于位置计算的值而基于感测线圈52的输出计算的Vs(fLOW,N)和Vs(fHIGH,N),其中,V(fLOW,N)(N为感测线圈的编号)表示在低频侧计算频率(fLOW)测量出的感测线圈52的输出,V(fHIGH,N)(N为感测线圈的编号)表示在高频侧计算频率(fHIGH)测量出的感测线圈52的输出。

Vs(fLOW,N)=V(fLOW,N)-Vc(fLOW,N)

Vs(fHIGH,N)=V(fHIGH,N)-Vc(fHIGH,N)

由此,在随后的步骤中,将Vs(fLOW,N)和Vs(fHIGH,N)表示为“基于感测线圈52的输出而计算出的值”。

当要获得上述计算频率时,至少一个感测线圈52的输出足够以获得低频侧计算频率和高频侧计算频率。更具体地说,尽管在步骤1中测量所有感测线圈52的输出频率特性,但是在步骤3中针对特定感测线圈52进行测量并且执行步骤4的处理就足以获得计算频率。

首先,选择一个感测线圈52。接着,在频率摆动的同时从驱动线圈51产生交变磁场。这时,连接到所选择感测线圈52的带通滤波器61的中心频率根据由驱动线圈51产生的交变磁场的频率而摆动(改变)。在由驱动线圈51产生的交变磁场发生摆动的同时测量感测线圈52的输出(通过带通滤波器61、放大器62,以及真实RMS转换器63的输出)。

此后,将囊状内窥镜20置于空间S中。按照与上述相同的方式,在频率摆动的同时从驱动线圈51产生交变磁场,连接到所选择感测线圈52的带通滤波器61的中心频率根据从驱动线圈51产生的交变磁场的频率而摆动,以测量感测线圈52的输出。

接着,获得在没有将囊状内窥镜20置于空间S中时的测量结果(感测线圈52的输出)与在将囊状内窥镜20置于空间S中时的测量结果(感测线圈52的输出)之间的差。

该结果如上述图8所示,由此可以获得计算频率。

如下地执行对所有感测线圈52的校准。在确定了计算频率之后,再次将囊状内窥镜20从空间S中去除,将带通滤波器61的中心频率调节成低频侧计算频率。接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率。驱动线圈51产生具有低频侧计算频率的交变磁场,并且测量所有感测线圈52的输出。将这些测量结果保存为Vc(fLOW,N)。

在随后的步骤中,将带通滤波器61的中心频率调节成高频侧计算频率。接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率,驱动线圈51产生具有高频侧计算频率的交变磁场。测量所有感测线圈52的输出。将这些测量结果保存为Vc(fHIGH,N)。

在获得了这些计算频率之后,检测囊状内窥镜20的位置和方向。

首先,将带通滤波器61的中心频率调节成低频侧计算频率(步骤5)。此外,将带通滤波器61的通过频率范围设置为可以提取感测线圈52的增益变化的局部极值的范围。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤6)。更具体地说,通过将信号发生电路53产生的AC电流的频率控制成低频侧计算频率,来控制驱动线圈51形成的交变磁场的频率。

接着,通过驱动线圈51产生具有低频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤7;检测步骤)。简单地说,测量感测线圈52的输出,获得Vs(fLOW,N),这是基于感测线圈52的输出而计算出的值,其中,N表示选择的感测线圈52的编号。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤8)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤9)。

通过驱动线圈51产生具有高频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤10;检测步骤)。简单地说,测量感测线圈52的输出,以获得Vs(fHIGH,N),这是基于感测线圈52的输出而计算出的值,其中,N表示选择的感测线圈52的编号。

如上所述,可以首先执行使用低频侧计算频率的检测,随后执行使用高频侧计算频率的检测。另选的是,可以首先执行使用高频侧计算频率的检测,随后执行使用低频侧计算频率的检测。

此后,位置检测装置50A计算Vs(fLOW,N)-Vs(fHIGH,N),这表示各个感测线圈52在低频侧计算频率与高频侧计算频率之间的输出差(振幅差),接着,选择要使用其输出差来估计囊状内窥镜20的位置的感测线圈52(步骤11)。

选择感测线圈52的方法不限于特定的方法,只要可以选择具有大输出差的感测线圈52即可。例如,如图9所示,可以选择面对驱动线圈51并且囊状内窥镜20位于驱动线圈51与其之间的感测线圈52。另选的是,如图10所示,可以选择设置在与驱动线圈51所在平面相邻的相互面对平面中的感测线圈52。

位置检测装置50A向感测线圈选择器56发出从选择的感测线圈52向感测线圈接收电路57输入AC电流的命令,从而选择感测线圈52。

接着,位置检测装置50A基于选择的感测线圈52的输出差来计算囊状内窥镜20的位置和取向(步骤12;位置计算步骤),以确定位置和取向(步骤13)。

更具体地说,位置检测单元50A基于从选择的感测线圈52计算出的振幅差,通过对包含囊状内窥镜20的位置、方向和磁场强度的联立方程进行求解,获得囊状内窥镜20的位置。

由此,基于感测线圈52的输出差,可以消除例如因环境条件(例如温度)而造成的感测线圈接收电路的特性的变化,由此可以按可靠的精度获得囊状内窥镜20的位置,而不会受环境条件的影响。

关于囊状内窥镜20的位置等的信息包括6条信息,例如,X、Y和Z位置坐标,囊状内窥镜20的纵轴(旋转轴)的方向φ和θ,以及磁感应线圈42产生的感应磁场的强度。

为了通过计算来估计这6条信息,需要至少6个感测线圈52的输出。因此,优选的是,在步骤11的选择中选择至少6个感测线圈52。

接着,如图7中所示,选择用于后继控制的感测线圈52(步骤14)。

更具体地说,位置检测装置50A基于在步骤13中计算出的囊状内窥镜20的位置和取向,通过计算来获得从磁感应线圈42产生的磁场在各个感测线圈52的位置处的强度,并且选择设置在磁场强度高的位置处的必要数量的感测线圈52。当重复获取囊状内窥镜的位置和取向时,基于在后面要说明的步骤22中计算出的囊状内窥镜20的位置和取向来选择感测线圈52。

尽管在这个实施例中,选择的感测线圈52的数量应当为至少6个,但是,在最小化位置计算误差的方面,选择大约10到15个感测线圈52是有利的。另选的是,可以按如下方式来选择感测线圈52:基于在步骤13(或者后面要说明的步骤22)中获得的囊状内窥镜20的位置和取向来计算由于从磁感应线圈42产生的磁场而导致的所有感测线圈52的输出,接着选择具有大输出的必要数量的感测线圈52。

此后,将带通滤波器61的中心频率重新调节成低频侧计算频率(步骤15)。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤16)。

接着,由驱动线圈51产生具有低频侧计算频率的交变磁场,以使用步骤14中选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤17;检测步骤)。采用与步骤7相同的方式,获得Vs(fLOW,N),其是基于感测线圈52的输出而计算出的值。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤18)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤19)。

接着,由驱动线圈51产生具有高频侧计算频率的交变磁场,以使用步骤13中选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤20;检测步骤)。接着,采用与步骤10相同的方式,获得Vs(fHIGH,N),其是基于感测线圈52的输出而计算出的值。

接着,位置检测装置50A基于在步骤14中选择的感测线圈52的输出差来计算囊状内窥镜20的位置和取向(步骤21;位置计算步骤),以确定位置和取向(步骤22)。

在步骤22中,可以将针对计算出的囊状内窥镜装置20的位置和取向的数据输出到另一装置或显示部82。

此后,如果继续检测囊状内窥镜装置20的位置和取向,则流程返回到步骤14,其中执行对位置和取向的检测。

此外,位置检测装置50A与上述控制操作并行地选择用于产生磁场的驱动线圈51,并且向驱动线圈选择器55输出用于向选择的驱动线圈51提供AC电流的指令。如图11所示,在选择驱动线圈51的方法中,排除连接其和磁感应线圈42的直线(驱动线圈51的取向)与磁感应线圈42的中心轴(囊状内窥镜20的旋转轴R)大致正交的驱动线圈51。此外,如图12所示,选择驱动线圈51以使得按作用于磁感应线圈42上的磁场的取向线性无关的方式向三个驱动线圈51提供AC电流。

更优选的方法是如下的方法:省略由其产生的磁力线的取向与磁感应线圈42的中心轴大致正交的驱动线圈51。

如上所述,可以使用驱动线圈选择器55来限制形成交变磁场的驱动线圈51的数量,或者,可以不使用驱动线圈选择器55,而将驱动线圈51的数量初始设置为三个。

如上所述,可以选择三个驱动线圈51来形成交变磁场,或者,如图9所示,可以通过全部的驱动线圈51来产生交变磁场。

现在,更具体地对驱动线圈51的切换进行说明。

执行在驱动线圈中进行切换的操作,作为防止如下的可能问题的措施:如果在囊状内窥镜20的位置处驱动线圈51产生的磁场的方向与磁感应线圈42的取向正交,则磁感应线圈42产生的感应磁场变小,由此降低位置检测的精度。

可以从位置检测装置50A的输出来识别磁感应线圈42的方向,即囊状内窥镜20的方向。此外,可以通过计算获得在囊状内窥镜20的位置处由驱动线圈51产生的磁场的方向。

因此,可以通过计算获得囊状内窥镜20的取向与在囊状内窥镜20的位置处由驱动线圈51产生的磁场的方向之间的角度。

按相同的方式,还可以通过计算获得在囊状内窥镜20的位置处的磁场(即按不同位置和取向设置的单独驱动线圈51产生的磁场)的方向。按相同的方式,可以通过计算获得囊状内窥镜20的取向与在囊状内窥镜20的位置处由各个驱动线圈51产生的磁场的方向之间的角度。

这样,可以通过仅仅选择在囊状内窥镜20的位置处在囊状内窥镜20的取向与由其产生的磁场的方向之间为锐角的驱动线圈51,来使得磁感应线圈42产生的感应磁场保持为较大。这对于位置检测是有利的。

为了执行在驱动线圈51中进行切换的操作,在步骤1的校准中执行下述处理。

首先,选择一个驱动线圈51,并且在频率改变(摆动)时由该驱动线圈51产生交变磁场。这时,在将设置在各个感测线圈52的下游的带通滤波器61的中心频率调节成由该驱动线圈51产生的交变磁场的频率时测量所有感测线圈52的输出,以获得这些感测线圈52与该驱动线圈51相关联的频率特性。

接着,将所有感测线圈的频率特性与所选择的驱动线圈51相关联地存储。

接下来,选择另一驱动线圈51,并且在频率改变(摆动)时由该驱动线圈51产生交变磁场。这时,在将设置在各个感测线圈52的下游的带通滤波器61的中心频率调节成由该驱动线圈51产生的交变磁场的频率时测量所有感测线圈52的输出,以获得这些感测线圈52与该驱动线圈51相关联的频率特性。

接着,将所有感测线圈的频率特性与新选择的驱动线圈51相关联地存储。

可以针对所有驱动线圈重复进行这个操作,以存储针对驱动线圈51和感测线圈52的所有组合的感测线圈52的频率特性。

接下来,如上所述,将囊状内窥镜20放入空间S中(步骤2),并且在囊状内窥镜20位于空间S中时测量频率特性。为了在这时进行测量,在选择任一驱动线圈51和任一感测线圈52之后,针对该组合计算感测线圈52的输出的频率特性(步骤3)。

在各个频率分量,获得在步骤3中获取的结果与在步骤1中针对在步骤3中选择的驱动线圈51和感测线圈52的组合而存储的感测线圈52的频率特性之间的差。该结果如图8中所示。接着,如上所述地选择计算频率。

接着,从在步骤1中获得的针对驱动线圈51和感测线圈52的所有组合的感测线圈52的频率特性,提取在囊状内窥镜20处于空间S之外时感测线圈针对驱动线圈51和感测线圈52的所有组合在计算频率的输出。尽管这对应于上述的Vc(fLOW,N)、Vc(fHIGH,N),但是考虑到与所有驱动线圈的关联,在此使用符号Vc(fLOW,N,M)和Vc(fHIGH,N,M),其中N表示感测线圈的编号,而M表示驱动线圈的编号。

步骤5已经说明过了,因此,这里不再进行说明。

在步骤6中,将信号发生电路的频率设置为低频侧计算频率,此外,通过位置检测装置50A操作驱动线圈选择器55,以选择作为输出用驱动线圈的驱动线圈51。

在步骤7中,测量所有感测线圈52的输出。如上所述地执行这时的测量。

接着,获得Vs(fLOW,N)=V(fLOW,N)-Vc(fLOW,N,M),这是基于感测线圈52的输出而计算出的值,其中M是步骤6中选择的驱动线圈的编号。步骤5已经说明过了,因此,这里不再进行说明。

在步骤9中,按照原样,使用步骤6中选择的驱动线圈52执行上述操作。

在步骤10中,测量所有感测线圈的输出。这时的测量结果与上述V(fHIGH,N)相同。

接着,获得Vs(fHIGH,N)=V(fHIGH,N)-Vc(fHIGH,N,M),这是基于感测线圈52的输出而计算出的值,其中M是步骤6中选择的驱动线圈的编号。

步骤11、步骤12以及步骤13已经说明过了,因此,这里不再进行说明。

在步骤14中,选择用于后继位置计算的感测线圈,并且选择用于后继测量的驱动线圈。

对感测线圈的选择与上述情况相同,由此不再重复。现在,对选择驱动线圈的过程进行说明。

首先,通过计算获得在囊状内窥镜20的位置处由驱动线圈51产生的磁场的方向。接着,计算囊状内窥镜20的取向与在囊状内窥镜20的位置处由驱动线圈51产生的磁场的方向之间的角度。

按相同的方式,还可以通过计算获得在囊状内窥镜20的位置处的磁场(即按不同位置和取向设置的单独驱动线圈51产生的磁场)的方向。按相同的方式,可以通过计算获得囊状内窥镜20的取向与在囊状内窥镜20的位置处由各个驱动线圈51产生的磁场的方向之间的角度。

根据这些计算结果,选择在囊状内窥镜20的位置处在囊状内窥镜20的取向与由其产生的磁场的方向之间具有最锐的角的驱动线圈51。通过按这种方式选择驱动线圈51,可以使由磁感应线圈42产生的感应磁场保持为较大,确保了位置检测的优良条件。

步骤15已经说明过了,因此,这里不再进行说明。

在步骤16,将信号发生电路的频率设置为低频侧计算频率,此外,通过位置检测装置50A操作驱动线圈选择器55,以选择作为输出用驱动线圈的驱动线圈51。

在步骤17中,对步骤14中选择的所有感测线圈52的输出进行测量。这对应于V(fLOW,N)。接着,如下地计算获得的Vc(fLOW,N,M)(这是在囊状内窥镜20处于空间S之外时感测线圈在计算频率针对驱动线圈51和感测线圈52的所有组合的输出)与表示对应的感测线圈和驱动线圈的组合的数据之间的差,以获得Vs(fLOW,N)。

Vs(fLOW,N)=V(fLOW,N)-Vc(fLOW,N,M)

步骤18已经说明过了,因此,这里不再进行说明。

在步骤19中,将信号发生电路的频率设置为高频侧计算频率,而不对步骤16中设置的驱动线圈55进行切换。

在步骤20中,测量在步骤14中选择的所有感测线圈52的输出。这对应于V(fHIGH,N)。接着,如下地计算获得的Vc(fHIGH,N,M)(这是在囊状内窥镜20处于空间S之外时感测线圈在计算频率针对驱动线圈51和感测线圈52的所有组合的输出)与表示对应的感测线圈和驱动线圈的组合的数据之间的差,以获得Vs(fHIGH,N)。

Vs(fHIGH,N)=V(fHIGH,N)-Vc(fHIGH,N,M)

在步骤21中,位置检测装置50A计算Vs(fLOW,N)-Vs(fHIGH,N)(这表示各个选择的感测线圈52在低频侧计算频率与高频侧计算频率之间的输出差(振幅差)),以基于该值执行用于估计囊状内窥镜20(即,磁感应线圈42)的位置和方向的计算。

步骤22和23已经说明过了,因此,这里不再进行说明。

根据上述处理(选择驱动线圈51和感测线圈52),在确保来自磁感应线圈42的感应磁场尽可能大的情况下,可以通过感测线圈52有效地检测由磁感应线圈42产生的感应磁场。这减小了对囊状内窥镜20(磁感应线圈42)的位置计算所使用的数据量,而不会牺牲精度。因此可以减小计算量,并且可以按较低的成本构建系统。还提供了其他优点,如系统速度加快。

此外,在选择驱动线圈51时,可以选择两个或更多个驱动线圈51。在这种情况下,计算所有选择的驱动线圈在囊状内窥镜20(磁感应线圈42)的位置处产生的磁场,并且将各个驱动线圈51的输出调节成使得合成磁场的方向与囊状内窥镜20(磁感应线圈42)的方向之间的角度为锐角。作为代替,可以将通过对所选择感测线圈52的校准而获得的值计算为输出驱动线圈51的输出值与通过将基于单独驱动线圈的输出的因数乘以Vc(fLOW,N,M)而获得的值的和,以及计算为输出驱动线圈51的输出值与通过将基于单独驱动线圈的输出的因数乘以Vc(fHIGH,N,M)而获得的值的和,其中,Vc(fLOW,N,M)和Vc(fHIGH,N,M)是上述的测量结果。此外,可以准备驱动线圈的输出率已经确定了的一些输出模式,从而在步骤1中可以基于这些输出模式来执行校准。按这种方式,可以更灵活地设置囊状内窥镜20(磁感应线圈42)的位置处的磁场的取向。因此,可以实现更加准确和有效的位置检测。

此外,可以将驱动线圈51的输出调节成使得由驱动线圈51产生的在囊状内窥镜20(磁感应线圈42)的位置处的磁场落入磁场强度的预定或确定范围内。同样,在这种情况下,可以代替地将通过对所选择感测线圈52的校准而获得的值计算为输出驱动线圈51的输出值与通过将基于单独驱动线圈的输出的因数乘以Vc(fLOW,N,M)而获得的值的和,以及计算为输出驱动线圈51的输出值与通过将基于单独驱动线圈的输出的因数乘以Vc(fHIGH,N,M)而获得的值的和,其中,Vc(fLOW,N,M)和Vc(fHIGH,N,M)是上述的测量结果。

按这种方式,可以输出由磁感应线圈42产生的更稳定的感应磁场。因此,可以实现更加准确和有效的位置检测。

接下来,对磁感应装置70的操作进行说明。

如图1所示,在磁感应装置70中,首先,操作员经由输入装置74向旋转磁场控制电路73输入针对囊状内窥镜20的引导方向。在旋转磁场控制电路73中,基于输入的引导方向和从位置检测装置50A输入的囊状内窥镜20的取向(旋转轴方向),确定要向囊状内窥镜20施加的平行磁场的取向和旋转方向。

接着,为了产生平行磁场的取向,计算需要由赫尔姆霍茨线圈71X、71Y和71Z产生的磁场的强度,并且计算产生这些磁场所需要的电流。

将向单个赫尔姆霍茨线圈71X、71Y和71Z提供的电流数据输出到对应的赫尔姆霍茨线圈驱动器72X、72Y和72Z,并且赫尔姆霍茨线圈驱动器72X、72Y和72Z基于输入数据执行对电流的放大控制,并将电流提供给对应的赫尔姆霍茨线圈71X、71Y和71Z。

向其提供了电流的赫尔姆霍茨线圈71X、71Y和71Z根据各自的电流值产生磁场,通过合成这些磁场,产生具有由旋转磁场控制电路73确定的磁场取向的平行磁场。

囊状内窥镜20中设置有引导磁体45,并且如下所述,基于作用于引导磁体45上的力和转矩以及上述平行磁场来控制囊状内窥镜20的取向(旋转轴方向)。此外,通过将平行磁场的旋转周期控制成大约0Hz到几Hz并且对平行磁场的旋转方向进行控制,从而控制围绕囊状内窥镜20的旋转轴的旋转方向,并且控制囊状内窥镜20的移动方向和移动速度。

接下来,对囊状内窥镜20的操作进行说明。

如图5所示,在囊状内窥镜20中,首先,将红外光照射到开关部46的红外线传感器47上,开关部46向信号处理部34输出信号。当信号处理部34接收到来自开关部46的信号时,从电池39向内置于囊状内窥镜20中的图像传感器31、LED 33、无线电装置35以及信号处理部34本身提供电流,这些部件启动。

图像传感器31形成患者1的体腔中的通道内部的被LED 33照亮的壁面的图像,将该图像转换为电信号,并将其输出到信号处理部34。信号处理部34压缩输入的图像,临时存储它,并且将它输出到无线电装置35。将输入到无线电装置35的压缩图像信号作为电磁波发送到图像显示装置80。

囊状内窥镜20可以通过借助于设置在外壳21的外周上的螺旋部25围绕旋转轴R旋转而向前端部23或后端部24移动。通过围绕旋转轴R的旋转方向和螺旋部25的旋转方向来确定移动的方向。

接下来,对图像显示装置80的操作进行说明。

如图1所示,在图像显示装置80中,首先,图像接收电路81接收从囊状内窥镜20发送来的压缩图像信号,并将该图像信号输出到显示部82。在图像接收电路81或显示部82中对压缩图像信号进行进行重构,并且通过显示部82对其进行显示。

此外,显示部82基于从旋转磁场控制电路73输入的囊状内窥镜20的旋转相位数据,沿与囊状内窥镜20的旋转方向相反的方向执行对图像信号的旋转处理,并显示它。

使用上述结构,因为磁感应线圈42的谐振频率是使用频率随时间改变的交变磁场来获得的,所以可以不考虑磁感应线圈42的谐振频率的大变化地获得该谐振频率,从而可以基于该谐振频率获得计算频率。为此,不管磁感应线圈42的谐振频率的变化如何,都可以基于计算频率来计算囊状内窥镜20的位置和取向。

结果,不必设置用于调节磁感应线圈42的谐振频率的元件等,因此,可以减小囊状内窥镜20的尺寸。此外,不再需要为了调节谐振频率而对与磁感应线圈42一起组成谐振电路43的诸如电容器等的元件进行选择或调节。这防止了囊状内窥镜20的制造成本的增加。

因为仅使用具有低频侧计算频率和高频侧计算频率的交变磁场来计算囊状内窥镜20的位置和取向,所以与例如使交变磁场的频率在预定范围内摆动的方法相比,可以减小计算位置和取向所需要的时间。

因为带通滤波器61可以基于低频侧计算频率和高频侧计算频率来限制感测线圈52的输出频率的频带,所以可以基于频率范围在低频侧计算频率和高频侧计算频率附近的感测线圈输出来计算囊状内窥镜20的位置和取向,因此,可以减小计算位置和取向所需要的时间。

从线性无关的三个或更多个不同方向将交变磁场施加到囊状内窥镜20的磁感应线圈42。因此,无论磁感应线圈42的取向如何,都可以通过至少一个方向的交变磁场在磁感应线圈42中产生感应磁场。

结果,无论囊状内窥镜20的取向(旋转轴R的轴方向)如何,都始终可以在磁感应线圈42中产生感应磁场;因此,提供了如下优点:始终可以通过感测线圈52检测到感应磁场,这使得可以始终精确地检测其位置。

此外,因为相对于囊状内窥镜20在三个不同方向上都设置有感测线圈52,所以无论囊状内窥镜20所在的位置如何,都有可检测强度的感应磁场作用于沿三个方向设置的感测线圈52中的沿至少一个方向设置的感测线圈52上,这使得感测线圈52始终可以检测到感应磁场。

此外,如上所述,因为在一个方向上设置的感测线圈52的数量为9个,所以确保了足以通过计算获取总计6条信息的数量个输入,其中这6条信息包括囊状内窥镜20的X、Y和Z坐标,关于彼此正交并且与囊状内窥镜20的旋转轴R正交的两个轴的旋转相位φ和θ,以及感应磁场的强度。

通过将交变磁场的频率设置为接近于谐振电路43发生谐振的频率(谐振频率),与使用另一频率的情况相比,可以产生具有较大振幅的感应磁场。因为感应磁场的振幅较大,所以感测线圈52可以容易地检测该感应磁场,这使得容易检测囊状内窥镜20的位置。

此外,因为交变磁场的频率在谐振频率附近的频率范围内进行摆动,所以,即使谐振电路43的谐振频率因环境条件(例如,温度条件)的变化而改变,或者即使存在因谐振电路43的个体差异而造成的谐振频率偏移,只要改变的谐振频率或偏移的谐振频率包括在上述频率范围中,就可以在谐振电路43中引起谐振。

因为位置检测装置50A通过感测线圈选择器56来选择检测高强度感应磁场的感测线圈52,所以可以减小位置检测装置50A必须计算并处理的信息量,而不会牺牲精度,这使得可以减小计算负荷。同时,因为可以同时减小计算处理量,所以可以缩短计算所需要的时间。

因为驱动线圈51和感测线圈52位于囊状内窥镜20的工作区域的任一侧上的彼此相对的位置处,所以可以将驱动线圈51和感测线圈52定位为使得它们在其构造方面不会彼此发生干扰。

通过控制作用于内置于囊状内窥镜20中的引导磁体45上的平行磁场的取向,可以控制作用于引导磁体45上的力的取向,这使得可以控制囊状内窥镜20的移动方向。因为同时可以检测囊状内窥镜20的位置,所以可以将囊状内窥镜20引导到预定位置,由此,提供了如下优点:可以基于检测到的囊状内窥镜20的位置来准确地引导囊状内窥镜。

通过对被设置为沿相互正交方向彼此面对的三对赫尔姆霍茨线圈71X、71Y和71Z产生的磁场的强度进行控制,可以将在赫尔姆霍茨线圈71X、71Y和71Z内部产生的平行磁场的取向控制为预定方向。因此,可以将沿预定取向的平行磁场施加到囊状内窥镜20,并且可以使得囊状内窥镜20沿预定方向移动。

因为驱动线圈51和感测线圈52设置在赫尔姆霍茨线圈71X、71Y和71Z的内侧空间(该空间是患者1可以位于其中的空间)的周围,所以可以将囊状内窥镜20引导到患者1体内的预定部位。

通过使囊状内窥镜20围绕旋转轴R旋转,螺旋部25产生沿旋转轴的轴方向推动囊状内窥镜20的力。因为螺旋部25产生推力,所以可以通过控制囊状内窥镜20围绕旋转轴R的旋转方向来控制作用于囊状内窥镜20上的推力的方向。

因为图像显示装置80基于有关囊状内窥镜20围绕旋转轴R的旋转相位的信息来执行使显示图像沿与囊状内窥镜20的旋转方向相反的旋转方向旋转的处理,所以无论囊状内窥镜20的旋转相位如何,都可以在显示部82上显示始终固定在预定旋转相位的图像,换句话说,囊状内窥镜20看起来没有围绕旋转轴R发生旋转地沿旋转轴R行进的图像。

因此,当操作员在视觉地观察显示在显示部82上的图像的同时对囊状内窥镜20进行引导时,与显示图像是随同囊状内窥镜20的旋转而旋转的图像的情况相比,显示按上述方式显示为预定旋转相位图像的图像使得操作员可以更容易地观看,并且还使得更容易将囊状内窥镜20引导到预定部位。

如上所述,可以使得用于获得计算频率(步骤1、步骤3)的交变磁场的频率发生摆动。另选的是,通过使用位置检测装置50A作为从驱动线圈51产生脉冲磁场的脉冲磁场产生部,可以采用脉冲磁场来获得计算频率。

通过向驱动线圈51施加脉冲驱动电压而产生的脉冲磁场(如图13A所示)包括如图13B所示的多个频率分量。因此,与例如使磁场的频率摆动的方法相比,可以在更短的时间段内获得磁感应线圈42的谐振频率,此外,可以在宽得多的频率范围内获得谐振频率。在这种情况下,通过将可以对频率分量进行分析的频谱分析仪(图中未示出)连接到与感测线圈接收电路57相连接的感测线圈52,可以检测在向驱动线圈51施加脉冲驱动电压时从感测线圈52输出的信号的频率分量。

此外,可以通过使用作为混合磁场产生部(其通过驱动线圈51产生包含多个不同频率的交变磁场)的位置检测装置50A以在要获得计算频率时采用包含多个不同频率的交变磁场、还通过使用作为可以改变通过频率范围的可变带宽限制部的带通滤波器61,从而控制输入到频率确定部50B的频率范围。

使用这种结构,即使磁感应线圈42的谐振频率存在大的变化,与使用具有预定频率的交变磁场的情况相比,也更容易获得谐振频率。

第二实施例

现在,参照图14和15,对本发明的第二实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第一实施例的基本构造相同;然而,计算频率的确定方法和确定机制与第一实施例的情况不同。因而,在该实施例中,参照图14和15,仅对计算频率的确定方法和确定机制进行说明,省略对磁感应装置等的说明。

图14是示意性地示出根据该实施例的医用磁感应及位置检测系统的图。

使用相同标号来表示与第一实施例的部件相同的部件,由此不再进行说明。

如图14所示,医用磁感应及位置检测系统110主要由以下部件形成:囊状内窥镜(医用装置)120,其对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测器、计算装置)150,其检测囊状内窥镜120的位置;磁感应装置70,其基于检测到的囊状内窥镜120的位置和来自操作员的指令而引导囊状内窥镜120;以及图像显示装置180,其显示从该囊状内窥镜120发送来的图像信号。

如图14所示,位置检测单元150主要由以下部件形成:驱动线圈51,其在囊状内窥镜120中的磁感应线圈(后面要说明)中产生感应磁场;感测线圈52,其检测在磁感应线圈中产生的感应磁场;以及位置检测装置(位置分析单元、磁场频率改变部、驱动线圈控制部)150A,其基于感测线圈52检测到的感应磁场计算囊状内窥镜120的位置,并且控制由驱动线圈51形成的交变磁场。

位置检测装置150A设置有计算频率确定部(频率确定部)150B,以接收来自感测线圈接收电路和后面要说明的囊信息接收电路的信号。

图像显示装置180由以下部件形成:囊信息接收电路181,其接收从囊状内窥镜120发送来的图像和计算频率的值;以及显示部82,其基于接收的图像信号和来自旋转磁场控制电路73的信号显示图像。

图15是示出囊状内窥镜的构造的示意图。

如图15所示,囊状内窥镜120主要由以下部件形成:外壳21,其在内部容纳了多种装置;图像形成部30,其形成患者体腔中的通道的内表面的图像;电池39,其用于驱动图像形成部30;感应磁场产生部40,其通过上述驱动线圈51产生感应磁场;以及引导磁体45,其驱动囊状内窥镜120。

图像形成部30主要由以下部件形成:板36A,其被设置为与所述旋转轴R大致正交;图像传感器31,其设置在板36A的前端部23侧的表面上;透镜组32,其将患者体腔内的通道的内表面的像形成在图像传感器31上;LED(发光二极管)33,其照亮体腔内的通道的内表面;信号处理部34,其设置在板36A的后端部24侧的表面上;以及无线电装置(通信部)135,其向图像显示装置80发送图像信号。

在信号处理部34中,还设置有存储器部134A,该存储器部134A用于存储基于感应磁场产生部40的谐振电路43的谐振频率的计算频率。存储器部134A电连接到无线电装置135,被构造成在其中存储计算频率,并经由无线电装置135向外发送其中存储的计算频率。

现在,对具有上述构造的医用磁感应及位置检测系统110的操作进行说明。

在第一实施例中已经对医用磁感应及位置检测系统110的操作的概要进行了说明,因此,这里不再进行说明。

现在,对获得用于检测囊状内窥镜120的位置和方向的计算频率的过程和用于检测囊状内窥镜120的位置和方向的过程进行说明。

图16是例示从获取磁感应线圈42的频率特性到将获得的频率特性存储在存储器部134A中的过程的流程图。

首先,如图16所示,执行对位置检测单元150的校准(步骤31;预备测量步骤)。更具体地说,测量在没有将囊状内窥镜设置在空间S中时感测线圈52的输出,即,由于驱动线圈51形成的交变磁场的作用而导致的感测线圈52的输出。

在第一实施例中已经对形成交变磁场等的具体过程进行了说明,由此,这里不再进行说明。

接下来,将囊状内窥镜120置于空间S中(步骤32)。

接着,对囊状内窥镜120中安装的磁感应线圈42的频率特性进行测量(步骤33;测量步骤)。此后,在频率确定部150B中,从测量出的磁感应线圈42的频率特性中减去仅交变磁场作用于感测线圈52上时感测线圈52的输出,即步骤31中测量出的输出(计算差)。

此后,频率确定部150B经由无线电装置135将磁感应线圈42的频率特性存储在存储器部134A中(步骤34)。

在制造囊状内窥镜120时执行将上述频率特性存储在存储器部134A中的处理。为此,在实际使用囊状内窥镜120的现场既不需要获得频率特性也不需要存储频率特性。

此外,对于从步骤31到步骤34的处理,并不需要医用磁感应及位置检测系统110的所有部件。换句话说,能够控制一个驱动线圈51和一个感测线圈52的操作的系统就足够了。

图17和18是例示获取存储在存储器部134A的频率特性并检测囊状内窥镜120的位置和取向的过程的流程图。

现在,对检测其中存储了频率特性的囊状内窥镜120的位置和方向的过程进行说明。

首先,如图17所示,当接通囊状内窥镜120的开关时,无线电装置135向外发送存储在存储器部134A中的频率特性的数据,囊信息接收电路181接收发送的频率特性的数据,接着该数据输入到频率确定部150B(步骤41)。

此后,频率确定部150B基于获得的频率特性来获取用于检测囊状内窥镜120的位置和取向的计算频率(步骤42;频率确定步骤)。

如同第一实施例一样,对于计算频率,选择感测线圈52的增益变化出现最大值和最小值的频率。将较低的频率称为低频侧计算频率,而将较高的频率称为高频侧计算频率。

另选的是,可以在步骤34中将用于检测位置和方向的频率(低频侧计算频率、高频侧计算频率)存储在存储器部134A中。按这种方式,仅仅通过读取存储在存储器部134A中的数据就可以确定计算频率。

接着,如第一实施例中的步骤1,通过使用按照获得的低频侧计算频率和高频侧计算频率的交变磁场来执行对位置检测单元150的校准(步骤43;预备测量步骤),以测量在施加交变磁场时所有感测线圈52的输出。如同第一实施例一样,将测量到的输出表示为Vc(fLOW,N)和Vc(fHIGH,N)。

此后,将带通滤波器61的中心频率调节成低频侧计算频率(步骤44)。此外,将带通滤波器61的通过频率范围设置为可以提取感测线圈52的增益变化的局部极值的范围。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤45)。更具体地说,通过将信号发生电路53产生的AC电流的频率控制成低频侧计算频率,来控制驱动线圈51形成的交变磁场的频率。

接着,通过驱动线圈51产生具有低频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤46;检测步骤)。此外,在此,如同第一实施例一样,基于获得的V(fLOW,N)来计算Vs(fLOW,N)=V(fLOW,N)-Vc(fLOW,N),并且存储Vs(fLOW,N)作为基于感测线圈52的输出而计算出的值。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤47)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤48)。

通过驱动线圈51产生具有高频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤49;检测步骤)。这时,检测到V(fHIGH,N),并且,如同在步骤46中,计算Vs(fHIGH,N)=V(fHIGH,N)-Vc(fHIGH,N),以存储Vs(fHIGH,N)作为基于感测线圈52的输出而计算出的值。

如上所述,可以首先执行使用低频侧计算频率的检测,随后执行使用高频侧计算频率的检测。另选的是,可以首先执行使用高频侧计算频率的检测,随后执行使用低频侧计算频率的检测。

此后,位置检测装置150A计算各个感测线圈52在低频侧计算频率与高频侧计算频率之间的输出差(振幅差),接着,选择要使用其输出差来估计囊状内窥镜120的位置的感测线圈52(步骤50)。

在第一实施例中已经对用于选择感测线圈52的过程进行了说明,由此,这里不再进行说明。

接着,位置检测装置150A基于选择的感测线圈52的输出差来计算囊状内窥镜20的位置和取向(步骤51;位置计算步骤),以确定位置和取向(步骤52)。

接着,如图18所示,选择用于后继控制的感测线圈52(步骤53)。

更具体地说,位置检测装置150A基于在步骤52中计算出的囊状内窥镜120的位置和取向,通过计算获得从磁感应线圈42产生的磁场在各个感测线圈52的位置处的强度,并且选择设置在磁场强度高的位置处的必要数量的感测线圈52。当重复获取囊状内窥镜120的位置和取向时,基于在后面要说明的步骤61中计算出的囊状内窥镜120的位置和取向来选择感测线圈52。

尽管在这个实施例中,选择的感测线圈52的数量应当为至少6个,但是,在最小化位置计算误差的方面,选择大约10到15个感测线圈52是有利的。另选的是,可以按如下的方式来选择感测线圈52:基于在步骤52(或者后面要说明的步骤61)中获得的囊状内窥镜120的位置和取向来计算由于从磁感应线圈42产生的磁场而导致的所有感测线圈52的输出,接着,选择具有较大输出的必要数量的感测线圈52。

此后,将带通滤波器61的中心频率重新调节成低频侧计算频率(步骤54)。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤55)。

接着,由驱动线圈51产生具有低频侧计算频率的交变磁场,以使用选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤56;检测步骤)。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤57)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤58)。

接着,由驱动线圈51产生具有高频侧计算频率的交变磁场,以使用选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤59;检测步骤)。

接着,位置检测装置150A基于在步骤53中选择的感测线圈52的输出差来计算囊状内窥镜120的位置和取向(步骤60;位置计算步骤),以确定位置和取向(步骤61)。

在步骤61中,可以将计算出的囊状内窥镜120的位置和取向的数据输出到另一装置或显示部82。

此后,如果要继续检测囊状内窥镜装置120的位置和取向,则流程返回到步骤53,其中执行对位置和取向的检测。

使用上述结构,在要计算囊状内窥镜120的位置和取向时,获取预先存储在存储器部134A中的磁感应线圈42的频率特性,以获得低侧计算频率和高频侧计算频率。为此,与每次要执行对囊状内窥镜120的位置检测时都测量谐振频率以获得计算频率的方法相比,可以减小计算囊状内窥镜120的位置和取向所需要的时间。

如上所述,可以将磁感应线圈42的频率特性存储在存储器部134A中,从而可以经由无线电装置135和囊信息接收电路181将存储的频率特性自动发送给频率确定部150B。另选的是,可以将频率特性的值写在例如囊状内窥镜装置120的外壳21上,从而操作员可以将该值输入频率确定部150B。作为对外壳21的替代,可以将该值写在封装的包壳上。

此外,在存储器部134A中,可以存储磁感应线圈42的频率特性,或者可以存储基于频率特性计算出的计算频率。

此外,可以将频率特性等的值本身写在例如外壳21上,或者可以将频率特性等的值分类为几个等级以将等级写在例如外壳21上。

第三实施例

现在,参照图19和20,对本发明第三实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第一实施例的基本构造相同;然而,位置检测单元的构造与第一实施例的情况不同。因此,在该实施例中,仅使用图19和20对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图19是示出位置检测单元的驱动线圈和感测线圈的布局的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第一实施例的情况相同,所以省略对它们的说明。

如图19所示,将位置检测单元(位置检测系统、位置检测器、计算装置)250的驱动线圈(驱动线圈)251和感测线圈52设置为使得三个驱动线圈251分别与X、Y和Z轴正交、并且感测线圈52设置在分别与Y和Z轴正交的两个平面线圈支承部件258上。

可以使用如该图所示的矩形线圈或者赫尔姆霍茨线圈作为驱动线圈251。

如图19所示,在具有上述构造的位置检测单元250中,驱动线圈251产生的交变磁场的取向与X、Y和Z轴方向平行并且线性无关,具有相互正交的关系。

使用这种构造,可以从线性无关且相互正交的方向向囊状内窥镜20中的磁感应线圈42施加交变磁场。因此,无论磁感应线圈42的取向如何,与第一实施例相比,在磁感应线圈42中都更容易产生感应磁场。

此外,因为将驱动线圈151设置为彼此大致正交,所以简化了由驱动线圈选择器55对驱动线圈的选择。

如上所述,可以将感测线圈52设置在垂直于Y和Z轴的线圈支承部件258上,或者,如图20所示,可以将感测线圈52设置在位于囊状内窥镜20的工作区域的上部的倾斜线圈支承部件259上。

通过按这种方式来设置它们,可以将感测线圈52设置为不与患者1发生干扰。

第四实施例

现在,参照图21,对本发明的第四实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第一实施例的基本构造相同;然而,位置检测单元的构造与第一实施例的情况不同。因此,在该实施例中,仅使用图21对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图21是示出位置检测单元的驱动线圈和感测线圈的布局的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第一实施例的情况相同,所以省略对它们的说明。

如图21所示,关于位置检测单元(位置检测系统、位置检测器、计算装置)350的驱动线圈(驱动线圈)351和感测线圈52,将四个驱动线圈351设置在同一平面中,将感测线圈52设置在位于与驱动线圈351所在位置相对的位置处的平面线圈支承部件358、以及位于与驱动线圈351所在侧相同一侧的平面线圈支承部件358上,囊状内窥镜20的工作区域位于这两个平面线圈支承部件之间。

将驱动线圈351设置为使得驱动线圈351产生的交变磁场的取向彼此线性无关,如该图中箭头所示。

根据这个构造,不管囊状内窥镜20相对于驱动线圈351位于近区还是远区,两个线圈支承部件358中的一个都始终位于囊状内窥镜20附近。因此,在确定囊状内窥镜20的位置时,可以从感测线圈52获得足够强度的信号。

第四实施例的变型例

接下来,参照图22,对本发明第四实施例的变型例进行说明。

这个变型例的医用磁感应及位置检测系统的基本构造与第三实施例的基本构造相同;然而,位置检测单元的构造与第三实施例的情况不同。因此,在该变型例中,仅使用图22对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图22是示出位置检测单元的驱动线圈和感测线圈的定位的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第三实施例的情况相同,所以这里省略对它们的说明。

如图22所示,关于位置检测单元(位置检测系统、位置检测器、计算装置)450的驱动线圈351和感测线圈52,将四个驱动线圈351设置在同一平面中,将感测线圈52设置在位于与驱动线圈351所在位置相对的位置处的曲面线圈支承部件458、以及位于与驱动线圈351所在侧相同一侧的曲面线圈支承部件458上,囊状内窥镜20的工作区域位于这两个曲面线圈支承部件之间。

线圈支承部件458形成为朝着相对于囊状内窥镜20的工作区域的外侧凸起的曲面形状,感测线圈52设置在曲表面上。

如上所述,线圈支承部件458的形状可以是朝着相对于工作区域的外侧凸起的曲表面,或者它们可以是任何其他形状的曲表面,并没有具体限制。

使用上述构造,因为提高了设置感测线圈52的自由度,所以可以防止感测线圈52与患者1发生干扰。

第五实施例

现在,参照图23到28,对本发明的第五实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第二实施例的基本构造相同;然而,位置检测单元的构造与第二实施例的情况不同。因此,在该实施例中,仅使用图23到24对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图23是示意性地示出根据该实施例的医用磁感应及位置检测系统的图。

使用相同标号来表示与第二实施例中的部件相同的部件,由此这里不再进行说明。

如图23所示,医用磁感应及位置检测系统510主要由以下部件形成:囊状内窥镜120,其对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测器、计算装置)550,其检测囊状内窥镜120的位置;磁感应装置70,其基于检测到的囊状内窥镜120的位置和来自操作员的指令而引导囊状内窥镜120;以及图像显示装置180,其显示从囊状内窥镜120发送来的图像信号。

如图23所示,位置检测单元550主要由以下部件形成:驱动线圈51,其在囊状内窥镜120中的磁感应线圈(后面要说明)中产生感应磁场;感测线圈52,其检测在磁感应线圈中产生的感应磁场;相对位置改变部(相对位置改变单元)561,其用于改变驱动线圈51和感测线圈52的相对位置;相对位置测量部(相对位置测量单元)562,其用于测量这种相对位置;以及位置检测装置(位置分析单元、磁场频率改变部、驱动线圈控制部)550A,其基于感测线圈52检测到的感应磁场来计算囊状内窥镜120的位置,并且控制由驱动线圈51形成的交变磁场。

位置检测装置550A设置有:频率确定部150B,用于获得计算频率;和当前基准值产生部550B,用于产生基准值,以接收来自后面要说明的感测线圈接收电路和囊信息接收电路的信号。此外,当前基准值产生部550B设置有存储部(存储器部)550C,存储部550C用于将关于驱动线圈51和感测线圈52的相对位置的信息与关于感测线圈52的输出的信息相关联以将这些信息存储在其中。

在位置检测装置550A与驱动线圈51之间设置有:信号发生电路53,其基于来自位置检测装置550A的输出而产生AC电流;和驱动线圈驱动器54,其基于来自位置检测装置550A的输出而放大从信号发生电路53输入的AC电流。

在位置检测装置550A与驱动线圈51之间设置有相对位置改变部561,在相对位置改变部561与位置检测装置550A之间设置有相对位置测量部562。位置检测装置550A的输出经由相对位置改变部561输入到后面要说明的驱动线圈单元。相对位置测量部562经由相对位置改变部561从驱动线圈单元获取关于驱动线圈51和感测线圈52的相对位置的信息,并且将获取的信息输入到位置检测装置550A。

图24是例示设置有图23的驱动线圈51的驱动线圈单元与感测线圈52之间的位置关系的图。

如图24所示,在位置检测单元550中,设置有由大致球形的外框571A和内框571B组成的框部件571、可移动地设置在外框571A与内框571B之间的驱动线圈单元551、以及设置在内框571B的内表面上的感测线圈52。

图25是示意性地示出图24的驱动线圈单元551的结构的图。

如图25所示,驱动线圈单元551主要由以下部件构成:大致矩形的壳552;设置在壳552的表面的四个角的、面对外框571A和内框571B的驱动部553;驱动线圈51;用于控制驱动线圈单元551的移动方向的方向改变部555;以及形成为索状的连接部件556,其用于电连接驱动线圈单元551、驱动线圈驱动器54以及相对位置改变部561。

方向改变部555主要由从面对外框571A的表面突出地设置在该表面上的球形部557、用于控制球形部557的旋转的电动机558、以及用于控制电动机558的驱动的电动机电路559组成。

具有上述结构的医用磁感应及位置检测系统510的操作的概要与第二实施例的情况相同,由此,这里省略它们的说明。

现在,对根据该实施例的检测囊状内窥镜120的位置和取向的过程进行说明。

获取用于检测检测囊状内窥镜120的位置和方向的计算频率的过程(换句话说,直到将磁感应线圈42的频率特性存储在存储器部134A(参照图15)中的操作)与第二实施例的情况相同,由此,这里省略对它们的说明。

图26、27以及28是例示根据该实施例的检测囊状内窥镜120的位置和取向的过程的流程图。

首先,如图26所示,无线电装置135向外发送针对存储在存储器部134A中的频率特性的数据,囊信息接收电路181接收所发送的频率特性的数据,接着将该数据输入到频率确定部150B(步骤71)。

此后,频率确定部150B基于获得的频率特性而获取用于检测囊状内窥镜120的位置和取向的计算频率(步骤72;频率确定步骤)。

如同第一实施例一样,针对计算频率,选择感测线圈52的增益变化出现最大值和最小值的频率。将较低的频率称为低频侧计算频率,而将较高的频率称为高频侧计算频率。

使驱动线圈单元551移动到可移动范围的一端(步骤73)。更具体地说,如图23和25所示,从当前基准值产生部550B向相对位置改变部561输出控制信号,相对位置改变部561控制对驱动部553和方向改变部555的驱动,以使驱动线圈单元551移动。

此后,如图26所示,将带通滤波器61的中心频率调节成低频侧计算频率(步骤74)。此外,将带通滤波器61的通过频率范围设置为可以提取感测线圈52的增益变化的局部极值的范围。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤75)。

接着,通过驱动线圈51产生具有低频侧计算频率的交变磁场,以使用感测线圈52检测交变磁场(步骤76)。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤77)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤78)。

通过驱动线圈51产生具有高频侧计算频率的交变磁场,以使用感测线圈52检测交变磁场(步骤79)。

此后,将关于驱动线圈51和感测线圈52的相对位置的信息与感测线圈52的输出相关联,接着将其存储在当前基准值产生部550B的存储部550C中,作为基准值(步骤80)。

接着,使驱动线圈单元551移动到后继预定位置(步骤81)。该预定位置处于驱动线圈单元551的可移动范围内,并且隔开预定间隔。

如果存在没有获取基准值的预定位置,则流程进行到上述步骤74,以重复获取基准值。当针对所有预定位置都获取了基准值时,流程进行到后继步骤(步骤82)。

当针对所有预定位置都获取了基准值时,设置囊状内窥镜120,并且使驱动线圈单元551移动到可以检测囊状内窥镜120的位置的位置处。

此后,如图27所示,将带通滤波器61的中心频率调节成低频侧计算频率(步骤83)。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤84)。

接着,通过驱动线圈51产生具有低频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤85)。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤86)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤87)。

通过驱动线圈51产生具有高频侧计算频率的交变磁场,以使用感测线圈52来检测由磁感应线圈42感应出的磁场(步骤88)。

如上所述,可以首先执行低频侧计算频率的检测,随后执行高频侧计算频率的检测。另选的是,可以首先执行高频侧计算频率的检测,随后执行低频侧计算频率的检测。

此后,位置检测装置550A计算各个感测线圈52在低频侧计算频率与高频侧计算频率之间的输出差(振幅差),接着,选择要使用其输出差来估计囊状内窥镜120的位置的感测线圈52(步骤89)。

选择感测线圈52的过程与第一实施例的情况相同,这里省略对其的说明。

接着,当前基准值产生部550B基于驱动线圈51的当前位置选择存储在存储部550C中的基准值,并且将其设置为当前基准值(步骤90)。作为要选择的基准值,针对最接近于驱动线圈51和感测线圈52的当前相对位置的相对位置而获取的基准值是理想的。通过按这种方式进行选择,可以减小产生当前基准值所需要的时间。

位置检测装置550A基于当前基准值和在步骤89中选择的感测线圈52的输出来计算囊状内窥镜120的位置和方向(步骤91),并且确定位置和取向(步骤92)。

接着,如图28所示,选择用于后继控制的感测线圈52(步骤93)。

更具体地说,位置检测装置550A基于在步骤92中确定的囊状内窥镜120的位置和取向,估计囊状内窥镜120的移动方向以及囊状内窥镜120在移动之后的位置和取向,并且选择在囊状内窥镜120的估计位置和取向处具有最大输出的感测线圈52。

此后,将带通滤波器61的中心频率重新调节成低频侧计算频率(步骤94)。

接着,将驱动线圈51形成的交变磁场的频率调节成低频侧计算频率(步骤95)。

接着,由驱动线圈51产生具有低频侧计算频率的交变磁场,以使用选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤96)。

接下来,将带通滤波器61的中心频率调节成高频侧计算频率(步骤97)。

接着,将驱动线圈51形成的交变磁场的频率调节成高频侧计算频率(步骤98)。

接着,由驱动线圈51产生具有高频侧计算频率的交变磁场,以使用选择的感测线圈52来检测由磁感应线圈42感应出的磁场(步骤99)。

基于驱动线圈51的当前位置来选择存储在存储部550C中的基准值,并且将其设置为当前基准值(步骤100)。作为要选择的基准值,针对最接近于驱动线圈51和感测线圈52的当前相对位置的相对位置获取的基准值是理想的。

位置检测装置550A基于步骤100中的当前基准值和在步骤93中选择的感测线圈52的输出来计算囊状内窥镜120的位置和取向(步骤101),并且确定位置和取向(步骤102)。

此后,如果继续检测囊状内窥镜120的位置和取向,则流程返回到上述步骤93,以检测位置和取向(步骤103)。

使用上述结构,即使驱动线圈51和感测线圈52的相对位置是可变的,也可以获得囊状内窥镜120的位置和取向。

因为预先存储了上述基准值和驱动线圈51的位置和相对位置,所以即使驱动线圈51和感测线圈52的相对位置在检测囊状内窥镜120的位置时出现不同,也不必重新测量上述基准值等。

作为对上述的产生当前基准值的过程的替代,当前基准值产生部550B可以获取将相对位置与基准值相关联的预定近似式,以基于该预定近似式和当前相对位置来产生当前基准值。根据这种产生方法,因为基于预定近似式来产生当前基准值,所以与例如将存储在存储部550C中的基准值设置为当前基准值的方法相比,可以产生更精确的当前基准值。此外,所述预定近似式没有特别限制,可以使用任何公知的近似式。

(用于囊状内窥镜的位置检测系统)

现在,参照图29,对根据本发明的用于囊状内窥镜的位置检测系统进行说明。

图29是示意性地示出根据本发明的用于囊状内窥镜的位置检测系统的图。

根据本发明的用于囊状内窥镜的位置检测系统610仅由上述医用磁感应及位置检测系统110的位置检测单元150构成。因此,用于囊状内窥镜的位置检测系统610的部件、操作以及优点与医用磁感应及位置检测系统110的情况相同:省略对它们的说明,并仅示出图29。

此外,如上所述,将本发明应用于用于囊状内窥镜的位置检测系统、医用磁感应及位置检测系统、以及用于囊状医用装置的位置检测方法。然而,被患者(如受检者)吞服的装置不仅可以用作囊状内窥镜,而且可以用作囊状医用装置(各种类型的囊状医用装置,例如容纳有药品并且在体腔中的目标位置释放该药品的DDS囊;设置有化学传感器、血液传感器、DNA探针等以获取体腔中的信息的传感器囊;以及留在身体内以例如测量pH的留置囊)。此外,可以将磁感应线圈设置在内窥镜的端部导管、镊子的端部等,并且可以将本发明所述的位置检测系统用作用于在体腔中起作用的医用装置的位置检测系统。

此外,感测线圈52是可以检测磁场的磁场传感器就足够了,并且可以使用诸如GMR传感器、MI传感器、霍尔(Hall)元件,以及SQUID磁通计的多种传感器。

第一到第五实施例的其他变型例

在上述第一到第五实施例中的每一个实施例中,必须防止用于位置检测的磁场强度在医用装置的工作区域中下降。

例如,上述文献6中,公开了如下的技术:在外部设置具有三个三轴正交磁场产生线圈的大致矩形磁场源(位置检测磁场产生线圈),并且在医用囊中设置具有三个三轴正交磁场接收线圈的磁场检测线圈。根据这种技术,由于磁场源产生的交变磁场,在磁场检测线圈中可以产生感应电流,从而基于产生的感应电流来检测磁场检测线圈的位置,即医用囊的位置。

另一方面,在上述文献7中,公开了一种位置检测系统,该位置检测系统包括产生交变磁场的励磁线圈(位置检测磁场产生线圈)、接收该交变磁场以产生感应磁场的LC谐振磁性标记器(magnetic marker)、以及检测感应磁场的检测线圈。根据这种位置检测系统,因为LC谐振磁性标记器因寄生电容而在预定频率下引起谐振,所以使上述交变磁场的频率与上述预定频率相匹配可以使感应磁场的强度显著地高于其他频率下的强度,由此增加检测有效性。

然而,对于在上述文献6和7中公开的技术,如果组合使用磁场来例如引导医用囊的技术、并且将用于产生引导磁场的引导磁场产生线圈设置为使其中心轴与上述位置检测磁场产生线圈的中心轴大致相同,则存在如下的危险:根据由位置检测磁场产生线圈产生的交变磁场的随着时间的变化,在位置检测磁场产生线圈与引导磁场产生线圈之间出现互感应。

简言之,存在这样的问题:引导磁场产生线圈中的上述互感应而产生的电动势使得电流在由引导磁场产生线圈和引导线圈驱动装置形成的闭合电路中流动并且由于该电流而产生抵消上述交变磁场的磁场。

此外,因为引导磁场产生线圈使得感应空间中磁场分布均匀,所以通常将其构建成提供赫尔姆霍茨或类似功能,并且典型地通过将两个引导磁场产生线圈串联连接到引导线圈驱动装置来进行驱动。在这种情况下,即使仅在引导磁场产生线圈中的一个线圈中出现因互感应而造成的电动势,因为引导线圈驱动装置形成了闭合电路,所以电流也在另一引导磁场产生线圈中流动。因为这个原因,所以在感应空间中广泛地分布有相位与位置检测磁场的相位大致相反的磁场。

这时,如图42所示,由位置检测磁场产生线圈产生的位置检测磁场(虚线A)和由感应磁场产生线圈产生的感应磁场(虚线B)的合成磁场(实线C)与例如内置于囊中的线圈相交。具体地讲,根据位置检测磁场产生线圈与感应磁场产生线圈之间的相对位置关系,存在如下的危险:即使在例如医用囊的工作区域内,上述位置检测磁场(虚线A)的某些区域(L)也几乎被上述互感应磁场(虚线B)完全抵消。结果,出现这样的问题:因为由于没有磁场与例如内置于囊中的线圈相交而导致没有感应电流流动,所以没有产生感应磁场,因此,在该区域中不能检测例如医用囊的位置。

为了解决上述问题,可以采用下面的变型例来防止用于位置检测的磁场强度在医用装置的工作区域内下降。

第一变型例

现在,参照图30到33,对根据本发明的医用磁感应及位置检测系统的第一变型例进行说明。

图30是示出根据该变型例的医用磁感应及位置检测系统的概要结构的示意图。

如图30所示,医用磁感应及位置检测系统701主要由以下部件组成:位置检测磁场产生线圈(第一磁场产生部、驱动线圈)711,用于产生位置检测磁场(第一磁场);感测线圈(磁场传感器、磁场检测部)712,用于检测由安装在囊状内窥镜(医用装置)710中的磁感应线圈(内置线圈)710a产生的感应磁场;以及引导磁场产生线圈(引导磁场产生单元、电磁体、相对线圈)713A和713B,用于产生将囊状内窥镜引导到体腔中的预定位置的引导磁场(第二磁场)。

囊状内窥镜710设置有:包括磁感应线圈710a和具有预定电容的电容器的闭合电路;和用于结合引导磁场来控制囊状内窥镜710的位置和取向的磁体(该图中未示出)。上述闭合电路形成在预定频率发生谐振的LC谐振电路。可以将上述闭合电路构成为LC谐振电路,或者,如果可以用磁感应线圈710a中的寄生电容来实现预定的谐振频率,则两端开路的磁感应线圈710a可以(等效地)独自形成闭合电路。

作为囊状内窥镜710,可以列出多种类型的医用装置,包括其中安装有电子成像元件(如CMOS器件或CCD)的囊状内窥镜、和用于将药品输送到患者的体腔中的预定位置并且释放该药品的装置。囊状内窥镜710没有特定限制。

位置检测磁场产生线圈711由形成为大致平面形状的线圈构成,并且电连接到位置检测磁场产生线圈驱动部715。

感测线圈712由设置为大致平面形状的多个检测线圈712a构成,各个检测线圈712a都电连接到位置检测控制部716,从而将检测线圈712a的输出输入到位置检测控制部716。

位置检测控制部716电连接到位置检测磁场产生线圈驱动部715,从而将位置检测控制部716产生的控制信号输入到位置检测磁场产生线圈驱动部715。

图31是例示图30所示的引导磁场产生线圈的结构的连接图。

如图30和31所示,引导磁场产生线圈713A和713B由形成为大致平面形状的线圈构成,并且分别电连接到引导磁场产生线圈驱动部717A和717B。引导磁场产生线圈驱动部717A和717B电连接到感应控制部718,感应控制部718产生的控制信号输入到引导磁场产生线圈驱动部717A和717B。

将引导磁场产生线圈713A设置为面对位置检测磁场产生线圈711的附近并且位于位置检测磁场产生线圈711的相对于囊状内窥镜710的相对侧。将引导磁场产生线圈713B设置为面对感测线圈712的附近并且位于感测线圈712的相对于囊状内窥镜710的相对侧。

可以切换引导磁场产生线圈713A与位置检测磁场产生线圈711之间的位置关系或者引导磁场产生线圈713B与感测线圈712之间的位置关系。此外,如果引导磁场产生线圈713A具有空气芯并且形状为在其中容纳位置检测磁场产生线圈711,则如图32所示,可以将引导磁场产生线圈713A和位置检测磁场产生线圈711设置在大致同一平面上。此外,如果引导磁场产生线圈713B具有空气芯并且形状为在其中容纳感测线圈712,则可以将引导磁场产生线圈713B和感测线圈712设置在大致同一平面上。

现在,对具有上述结构的医用磁感应及位置检测系统701的操作进行说明。

首先,如图30所示,在位置检测控制部716中产生作为具有预定频率的AC信号的位置检测控制信号,并将该位置检测控制信号输出到位置检测磁场产生线圈驱动部715。位置检测磁场产生线圈驱动部715将输入的位置检测控制信号放大至预定强度,并且产生用于驱动位置检测磁场产生线圈711的驱动电流。将该驱动电流输出到位置检测磁场产生线圈711,由于被提供了驱动电流,磁场产生线圈11在其周围形成位置检测磁场。

当位置检测磁场的磁通量与囊状内窥镜710相交时,在其中安装有磁感应线圈710a的闭合电路中感应出具有预定频率的谐振电流。当在闭合电路中感应出谐振电流时,该谐振电流使磁感应线圈710a在其周围形成具有预定频率的感应磁场。

因为位置检测磁场和感应磁场的磁通量与感测线圈712的检测线圈712a相交,所以检测线圈712a捕捉到通过将这两个磁场的磁通量相加而产生的磁通量,并且基于相交磁通量的变化来产生作为感应电流的输出信号。各个检测线圈712a的输出信号输出到位置检测控制部716。

位置检测控制部716控制在位置检测磁场产生线圈711中形成的位置检测磁场的频率。更具体地说,通过改变在位置检测控制部716中产生的上述控制信号的频率来改变位置检测磁场的频率。当位置检测磁场的频率发生变化时,与囊状内窥镜710中的闭合电路的谐振频率的相对关系发生变化,并且在磁感应线圈710a中形成的感应磁场的强度发生变化。在这个示例中,出于位置计算的目的,对谐振频率附近的检测电压的变化进行检测。

此外,在位置检测控制部716中,使用公知的计算方法,基于来自检测线圈712a的输出信号,估计磁感应线圈710a(即囊状内窥镜710)的位置。

如图30和31所示,感应控制部718产生作为具有预定频率的AC信号的引导控制信号,并将该引导控制信号输出到引导磁场产生线圈驱动部717A和717B。

引导磁场产生线圈驱动部717A和717B将输入的引导控制信号放大至预定强度,并且产生用于驱动引导磁场产生线圈713A和713B的驱动电流。将该驱动电流输出到引导磁场产生线圈713A和713B,由于被提供了驱动电流,引导磁场产生线圈713A和713B在其周围形成引导磁场。

因为将引导磁场产生线圈连接到输出阻抗低得多的引导磁场产生线圈驱动部,所以当位置检测磁场与引导磁场产生线圈相交时在两个线圈之间出现互感应。结果,产生的电动势使电流在由引导磁场产生线圈和引导磁场产生线圈驱动部形成的闭合电路中流动。因为这个原因,引导磁场产生线圈沿抵消位置检测磁场的方向产生磁场。

图33是例示在图30的医用磁感应及位置检测系统中形成的磁场强度的图。

上述位置检测磁场产生线圈711和引导磁场产生线圈713A和713B形成具有图33所示磁场强度分布的磁场。图33中的虚线A表示由位置检测磁场产生线圈711形成的位置检测磁场的强度分布,图33中的链状线B表示由引导磁场产生线圈713A形成的互感应磁场的强度分布,而图33中的实线C表示位置检测磁场和由引导磁场产生线圈产生的互感应磁场的合成磁场。

位置检测磁场的强度分布如下:强度在位置检测磁场产生线圈711所在的位置L11处最大,并且强度随着离开该位置而下降。由引导磁场产生线圈产生的互感应磁场的强度分布如下:强度在引导磁场产生线圈713A所在的位置L13A处最大,并且强度随着离开该位置而下降。此外,因为位置检测磁场和互感应磁场具有彼此相反的相位,所以位置检测磁场和互感应磁场的合成磁场抵消。在此,互感应磁场的强度变成最大的位置L13A靠近或位于位置检测磁场的强度变成最大的位置L11,并且互感应磁场的最大强度低于位置检测磁场的最大强度。因此,至少在介于引导磁场产生线圈713A和713B之间的空间中,互感应磁场的强度大致等于或小于位置检测磁场的强度。因此,合成磁场呈现强度低于位置检测磁场的强度的磁场强度分布。更具体地说,强度在位置检测磁场产生线圈711所在的位置L11和引导磁场产生线圈713A所在的位置L13A附近变为最大,并且随着离开这些位置而下降。

使用上述结构,如图42所示,因为防止了出现合成磁场大致变为零的区域,所以防止了在安装于囊状内窥镜710中的磁感应线圈710a中出现不产生感应磁场的区域。因此,防止了出现不能检测到囊状内窥镜710的位置的区域。

因为分别通过引导磁场产生线圈驱动部717A和717B单独地控制对引导磁场产生线圈713A和713B的驱动,所以通过使用引导磁场产生线圈驱动部717B来控制对引导磁场产生线圈713B的驱动,使得来源于线圈713A中产生的电动势的电流不在引导磁场产生线圈713B中流动。因此,防止了在感测线圈的附近出现大致抵消位置检测磁场的磁场。

此外,因为可以通过使用引导磁场产生线圈驱动部717A来控制对引导磁场产生线圈713A的驱动从而连续形成引导磁场,所以可以连续引导囊状内窥镜710。

第二变型例

现在,参照图34到36,对根据本发明的第二变型例进行说明。

根据这个变型例的医用磁感应及位置检测系统的基本构造与第一变型例的基本构造相同;然而,感应磁场产生线圈驱动部的结构与第一变型例的结构不同。因此,在该变型例中,仅使用图34到36对感应磁场产生线圈驱动部的结构附近的情况进行说明,省略了对其他部件的说明。

图34是描绘根据这个变型例的医用磁感应及位置检测系统的概要结构的示意图。

使用相同的标号表示与第一变型例中的部件相同的部件,由此,这里不再对它们进行说明。

如图34所示,医用磁感应及位置检测系统801主要由以下部件构成:位置检测磁场产生线圈711,用于产生位置检测磁场;感测线圈712,用于检测由安装在囊状内窥镜710中的磁感应线圈710a产生的感应磁场;以及引导磁场产生线圈(引导磁场产生单元、电磁体、相对线圈)813A和813B,用于产生引导磁场。

图35是例示图34中的引导磁场产生线圈的结构的连接图。

引导磁场产生线圈813A和813B由形成为大致平面形状的线圈构成,并且,如图34和35所示,电连接到引导磁场产生线圈驱动部817。引导磁场产生线圈813A和813B并联电连接到引导磁场产生线圈驱动部817。引导磁场产生线圈驱动部817电连接到感应控制部718,感应控制部718产生的控制信号输入到引导磁场产生线圈驱动部817。

将引导磁场产生线圈813A设置为面对位置检测磁场产生线圈711的附近并且位于位置检测磁场产生线圈711的相对于囊状内窥镜710的相对侧。将引导磁场产生线圈813B设置为面对感测线圈712的附近并且位于感测线圈712的相对于囊状内窥镜710的相对侧。

可以切换引导磁场产生线圈813A与位置检测磁场产生线圈711之间的位置关系或者引导磁场产生线圈813B与感测线圈712之间的位置关系。此外,如果引导磁场产生线圈813A具有空气芯并且形状为在其中容纳位置检测磁场产生线圈711,则如图36所示,可以将引导磁场产生线圈813A和位置检测磁场产生线圈711设置在大致同一平面上。此外,如果引导磁场产生线圈813B具有空气芯并且形状为在其中容纳感测线圈712,则可以将引导磁场产生线圈813B和感测线圈712设置在大致同一平面上。

现在,对具有上述结构的医用磁感应及位置检测系统801的操作进行说明。

与检测囊状内窥镜710的位置有关的操作(例如在位置检测磁场产生线圈711中形成位置检测磁场,以及在磁感应线圈710a中形成感应磁场)与第一变型例中的操作相同,由此,这里省略了对它们的说明。

如图34和35所示,感应控制部718产生作为具有预定频率的AC信号的引导控制信号,并将该引导控制信号输出到引导磁场产生线圈驱动部817。

引导磁场产生线圈驱动部817将输入的引导控制信号放大至预定强度,并且产生用于驱动引导磁场产生线圈813A和813B的驱动电流。将该驱动电流输出到引导磁场产生线圈813A和813B,由于被提供了驱动电流,引导磁场产生线圈813A和813B在其周围形成引导磁场。

由上述位置检测磁场产生线圈711形成的位置检测磁场和引导磁场产生线圈813A和813B、从引导磁场产生线圈发出的互感应磁场、以及这些磁场的合成磁场的磁场强度分布与第一变型例的情况相同,由此,这里省略对它们的说明。

使用上述结构,因为防止了出现合成磁场大致变为零的区域,所以防止了在安装于囊状内窥镜710中的磁感应线圈710a中出现不产生感应磁场的区域。因此,防止了出现不能检测到囊状内窥镜710的位置的区域。

因为引导磁场产生线圈813A和813B是并联电连接的,所以防止了位置检测磁场在引导磁场产生线圈813B中产生互感应磁场。

此外,因为可以在引导磁场产生线圈813A中连续形成引导磁场,所以可以连续引导囊状内窥镜710。

第三变型例

现在,参照图37到39,对根据本发明的第三变型例进行说明。

根据这个变型例的医用磁感应及位置检测系统的基本构造与第一变型例的基本构造相同;然而,感应磁场产生线圈驱动部的结构与第一变型例的情况不同。因此,在该变型例中,仅使用图37到39对感应磁场产生线圈驱动部的结构附近的情况进行说明,省略对其他部件的说明。

图37是描绘根据这个变型例的医用磁感应及位置检测系统的概要结构的示意图。

使用相同的标号表示与第一变型例中的部件相同的部件,因此,这里不再对它们进行说明。

如图37所示,医用磁感应及位置检测系统901主要由以下部件构成:位置检测磁场产生线圈711,用于产生位置检测磁场;感测线圈712,用于检测由安装在囊状内窥镜710中的磁感应线圈710a产生的感应磁场;以及引导磁场产生线圈(引导磁场产生单元、电磁体、相对线圈)913A和913B,用于产生引导磁场。

图38是例示图37中的引导磁场产生线圈的结构的连接图。

引导磁场产生线圈913A和913B由形成为大致平面形状的线圈组成,并且,如图37和38所示,经由开关部919电连接到引导磁场产生线圈驱动部917。开关部919设置在由引导磁场产生线圈913A和913B以及引导磁场产生线圈驱动部917组成的闭合电路中。

引导磁场产生线圈913A和913B串联电连接。引导磁场产生线圈驱动部917电连接到感应控制部918,由感应控制部918产生的控制信号输入到引导磁场产生线圈驱动部917。感应控制部918电连接到开关部919,将感应控制部918产生的开/关信号输入到开关部919。此外,感应控制部918还电连接到位置检测控制部716,从而将从位置检测控制部716输出的操作信号输入到感应控制部918。

将引导磁场产生线圈913A设置为面对位置检测磁场产生线圈711的附近并且位于位置检测磁场产生线圈711的相对于囊状内窥镜710的相对侧。将引导磁场产生线圈913B设置为面对感测线圈712的附近并且位于感测线圈712的相对于囊状内窥镜710的相对侧。

可以切换引导磁场产生线圈913A与位置检测磁场产生线圈711之间的位置关系或者引导磁场产生线圈913B与感测线圈712之间的位置关系。此外,如果引导磁场产生线圈913A具有空气芯并且形状为在其中容纳位置检测磁场产生线圈711,则如图39所示,可以将引导磁场产生线圈913A和位置检测磁场产生线圈711设置在大致同一平面上。此外,如果引导磁场产生线圈913B具有空气芯并且形状为在其中容纳感测线圈712,则可以将引导磁场产生线圈913B和感测线圈712设置在大致同一平面上。

现在,对具有上述结构的医用磁感应及位置检测系统901的操作进行说明。

与检测囊状内窥镜710的位置有关的操作(例如,在位置检测磁场产生线圈711中形成位置检测磁场,以及在磁感应线圈710a中形成感应磁场)与第一变型例中的操作相同,因此,这里省略对它们的说明。

如图37和38所示,感应控制部918产生作为具有预定频率的AC信号的引导控制信号,并将该引导控制信号输出到引导磁场产生线圈驱动部917。

引导磁场产生线圈驱动部917将输入的引导控制信号放大至预定强度,并且产生用于驱动引导磁场产生线圈913A和913B的驱动电流。将该驱动电流输出到引导磁场产生线圈913A和913B,由于被提供了驱动电流,引导磁场产生线圈913A和913B在其周围形成引导磁场。

将用于基于从位置检测控制部716输入的操作信号来控制开关部919的开/关信号输出到感应控制部918。基于向位置检测磁场产生线圈驱动部715输出的控制信号来产生所述操作信号。更具体地说,当将用于形成位置检测磁场的控制信号输出到位置检测磁场产生线圈驱动部715时,输出用于断开(开路)开关部919的操作信号。

另一方面,当没有输出所述控制信号时,输出用于接通(闭合)开关部919的操作信号。

感应控制部918基于如上所述地输入的控制信号向开关部919输出开/关信号,基于该开/关信号来控制开关部919的开/关状态。

当要接通/断开开关部919时,可以如上所述地简单地控制开关部919的开/关状态,或者,感应控制部918可以基于操作信号而逐渐地改变向感应磁场产生线圈驱动部917输入的信号的振幅。通过如上所述地执行控制,防止了因引导磁场产生线圈913A和913B的自感应而造成的反电动势损坏引导磁场产生线圈驱动部917。

另选的是,如下方案也是可以接受的:当要断开开关部919时,感应控制部918基于操作信号逐渐地将向引导磁场产生线圈驱动部917输入的信号的振幅变成零,在振幅达到零时断开开关部。

使用上述结构,可以按时分方式驱动位置检测磁场产生线圈711以及引导磁场产生线圈913A和913B。因此,防止了在位置检测磁场产生线圈711与引导磁场产生线圈913A和913B之间出现互感应,由此防止了出现位置检测磁场和由引导磁场产生线圈产生的互感应磁场的合成磁场的强度大致变为零的区域。结果,防止了位置检测磁场的强度在囊状内窥镜710的工作区域中下降。

第四变型例

现在,参照图40和41对根据本发明的第四变型例进行说明。

根据这个变型例的医用磁感应及位置检测系统的基本构造与第一变型例的基本构造相同;然而,感应磁场产生线圈附近的结构与第一变型例中的情况不同。因此,在该变型例中,仅使用图40和41对感应磁场产生线圈附近的结构进行说明,省略对其他部件的说明。

图40是描绘根据这个变型例的医用磁感应及位置检测系统的概要结构的示意图。

使用相同的标号表示与第一变型例中的部件相同的部件,因此,这里不再对它们进行说明。

如图40所示,医用磁感应及位置检测系统1001主要由以下部件构成:位置检测磁场产生线圈711,用于产生位置检测磁场;感测线圈712,用于检测由安装在囊状内窥镜710中的磁感应线圈710a产生的感应磁场;以及引导磁场产生线圈(引导磁场产生单元、电磁体、相对线圈)1013A、1013B、1014A、1014B、1015A和1015B,用于产生将囊状内窥镜引导到体腔中的预定位置的引导磁场。

位置检测磁场产生线圈711设置有用于控制对位置检测磁场产生线圈711的驱动的驱动部1003,感测线圈712设置有用于处理从感测线圈712输出的信号的检测部1005。

驱动部1003主要由以下部件构成:信号发生部1023,用于输出具有在位置检测磁场产生线圈711中产生的交变磁场的频率的AC信号;以及磁场产生线圈驱动部1024,用于放大从信号发生部1023输入的AC信号并且驱动位置检测磁场产生线圈711。

检测部1005主要由以下部件构成:滤波器1025,用于截除来自检测线圈712a的输出信号中包含的不想要的频率分量;放大器1026,用于放大截除了不想要分量的输出信号DC转换器1027,用于将经放大的输出信号从AC信号转换为DC信号;A/D转换器1028,用于将经DC转换的输出信号从模拟信号转换为数字信号;CPU 1029,用于基于转换为数字信号的输出信号来执行计算处理;以及感测线圈选择器(磁场传感器选择单元)1040,用于从所有感测线圈712的输出信号中选择预定感测线圈712的输出信号。

用于保存不存在囊状内窥镜710时获取的输出信号的存储器1041连接到CPU 1029。通过设置存储器1041,更容易从存在囊状内窥镜710时获取的输出信号中减去不存在囊状内窥镜710时获取的输出信号。因此,可以容易地仅仅检测到与由囊状内窥镜710的磁感应线圈710a产生的感应磁场相关联的输出信号。

此外,DC转换器1027的示例为RMS转换器;然而,它没有特定限制。也可以使用公知的AC-DC转换器。

引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B被设置为彼此面对,其间具有满足赫尔姆霍茨条件的距离或类似距离。因此,由引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B产生的磁场的空间强度梯度可以被消除或者小得可忽略。

此外,引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B的中心轴被设置为彼此正交并且还在其中形成矩形空间。如图40所示,该矩形空间用作囊状内窥镜710的工作空间。

图41是例示图40的引导磁场产生线圈的概要结构的框图。

引导磁场产生线圈1014A和1014B串联电连接,引导磁场产生线圈1015A和1015B串联电连接。另一方面,因为引导磁场产生线圈1013A和1013B连接到不同的感应磁场产生线圈驱动部,所以它们和其他线圈对不同,并不是串联电连接。更具体地说,引导磁场产生线圈1013A和1013B分别电连接为使得不同引导磁场产生线圈驱动部1013C-1和1013C-2的输出输入到相应的引导磁场产生线圈1013A和1013B。此外,引导磁场产生线圈1014A和1014B串联电连接到引导磁场产生线圈驱动部1014C,引导磁场产生线圈1015A和1015B串联电连接到引导磁场产生线圈驱动部1015C。将电连接设置为使得来自信号发生器1013D的同一控制信号输入到引导磁场产生线圈1013C-1和1013C-2。此外,将电连接设置为使得来自信号发生器1014D和1015D的信号分别输入到引导磁场产生线圈驱动部1014C和1015C。将电连接设置为使得来自感应控制部1016的控制信号输入到信号发生器1013D、1014D和1015D。将电连接设置为使得来自输入装置1017(关于囊状内窥镜710的引导方向的指令从外部输入到该输入装置1017)的信号输入到感应控制部1016。

现在,对具有上述结构的医用磁感应及位置检测系统1001的操作进行说明。

首先,对检测医用磁感应及位置检测系统1001中的囊状内窥镜710的位置的操作进行说明。

如图40所示,在驱动部1003中,信号发生部1023产生具有预定频率的AC信号,并且将该AC信号输出到磁场产生线圈驱动部1024。磁场产生线圈驱动部1024将输入的AC信号放大至预定强度,并且将放大的AC信号输出到位置检测磁场产生线圈711。由于被提供了放大的AC信号,位置检测磁场产生线圈711在其周围形成交变磁场。

当上述交变磁场的磁通量与囊状内窥镜710相交时,在其中安装有磁感应线圈710a的检测器闭合电路中感应出具有预定频率的谐振电流。当在囊状内窥镜71的闭合电路中感应出谐振电流时,该谐振电流使磁感应线圈710a在其周围形成具有预定频率的感应磁场。

因为交变磁场和感应磁场的磁通量与感测线圈712相交,所以感测线圈712捕捉到由两个磁场的磁通量相加而产生的磁通量,并且基于相交磁通量的变化而产生作为感应电流的输出信号。感测线圈712的输出信号输出到检测部1005。

在检测部1005中,首先,将已经输入的输出信号输入到感测线圈选择器1040。感测线圈选择器1040仅让用于对囊状内窥镜710的位置检测的输出信号从其通过,并且截除其他输出信号。

用于选择输出信号的方法的示例包括选择具有高信号强度的输出信号、来自靠近囊状内窥镜710的感测线圈712的输出信号等。

如上所述,通过在感测线圈712与滤波器1025之间设置感测线圈选择器1040,可以仅仅选择用于位置检测的输出信号。另选的是,通过使感测线圈选择器1040从多个感测线圈712中切换连接,可以按时分方式将来自所有感测线圈712的输出信号输入到检测部1005。此外,通过将滤波器1025与A/D转换器1028之间的线路连接到多个感测线圈712,不必使用感测线圈选择器1040或选择输出信号。因而,并没有施加特定的限制。

将选择的输出信号输入到滤波器1025,并且去除该输出信号中的不能用于位置检测的频率分量,例如低频分量。将去除了不想要的分量的输出信号输入到放大器1026,接着将其放大为具有适合于其下游侧的A/D转换器1028的输入电平。

经放大的输出信号输入到DC转换器1027,将作为AC信号的输出信号转换为DC信号。此后,将输出信号输入到A/D转换器1028,将作为模拟信号的输出信号转换为数字信号。

已转换为数字信号的输出信号输入到CPU 1029。另一方面,将从连接到CPU 1029的存储器1041获得的不存在囊状内窥镜710时的输出信号输入到CPU 1029。

在CPU 1029中,通过计算输入的两个输出信号之间的差来获得与感应磁场相关联的输出信号,并且,基于获得的与感应磁场相关联的输出信号,执行用于识别磁感应线圈710a的位置(即囊状内窥镜710的位置)的计算。针对用于识别位置的计算,可以使用公知的计算方法,而不施加特定的限制。

现在,对引导囊状内窥镜的操作进行说明。

首先,向输入装置1017输入用于遥控囊状内窥镜710的要对囊状内窥镜710施加的移动。输入装置1017基于输入的信息向感应控制部1016输出一信号。基于输入的信号,感应控制部1016产生用于产生使囊状内窥镜710移动的磁场的控制信号,并且将该控制信号输出到信号发生器1013D、1014D和1015D。

在信号发生器1013D、1014D和1015D中,基于输入的控制信号,产生向引导磁场产生线圈驱动部1013C、1014C和1015C输出的信号。引导磁场产生线圈驱动部1013C、1014C和1015C对输入信号的电流进行放大,并且分别使电流在引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B中流动。

如上所述,通过使电流在引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B中流动,可以在囊状内窥镜710附近的区域中产生引导磁场。使用这种产生的磁场,可以使囊状内窥镜710中的磁体移动,由此可以通过使磁体移动而使囊状内窥镜710移动。

现在,对由引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B产生互感应磁场时的操作进行说明。

由位置检测磁场产生线圈711产生的交变磁场的磁通量与设置在位置检测磁场产生线圈711附近的引导磁场产生线圈1013A相交。这时,由于相交的磁通量,在引导磁场产生线圈1013A中产生如下的感应电动势,即,形成具有抵消磁场强度的变化的方向的磁场(即,相位与上述交变磁场的相位相反的反相磁场)的电动势。因为引导磁场产生线圈1013A和1013B分别由不同的引导磁场产生线圈驱动部1013C-1和1013C-2驱动,所以在1013A中产生的感应电动势使电流在由引导线圈驱动部1013C-1和引导磁场产生线圈1013A形成的闭合电路中流动并且形成相位与位置检测磁场的相位相反的反相磁场。另一方面,因为在引导磁场产生线圈1013B中没有电流流动,所以在感测线圈712附近不形成相位与位置检测磁场的相位相反的反相磁场。

根据上述结构,位置检测磁场产生线圈711产生在囊状内窥镜710的磁感应线圈710a中感应出感应磁场的位置检测磁场。通过感测线圈712来检测由磁感应线圈710a产生的感应磁场,并且使用其来检测具有磁感应线圈710a的囊状内窥镜710的位置或取向。

此外,由三组引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B产生的引导磁场作用于设置在囊状内窥镜710中的磁体上,以控制囊状内窥镜710的位置和取向。在此,因为将三组引导磁场产生线圈1013A和1013B、引导磁场产生线圈1014A和1014B、以及引导磁场产生线圈1015A和1015B设置为使其中心轴方向彼此正交,所以引导磁场的磁力线可以取向为任何的三维方向。结果,可以三维地控制具有磁体的囊状内窥镜710的位置和取向。

此外,因为两个引导磁场产生线圈1013A和1013B由不同的引导磁场产生线圈驱动部1013C-1和1013C-2驱动,所以即使出现位置检测磁场在引导磁场产生线圈1013A中感应出互感应磁场的情况,因引导磁场产生线圈1013A感应出的电动势而造成的电流也不会在引导磁场产生线圈1013B中流动。因此,引导磁场产生线圈1013B不会产生相位与位置检测磁场的相位相反的互感应磁场,仅仅产生引导磁场。结果,因为防止了在引导磁场产生线圈1013B中出现抵消位置检测磁场的磁场,所以防止了出现位置检测磁场大致变为零的区域。

本发明的技术领域不限于上述变型例。

例如,尽管上述变型例应用于包括设置在大致同一直线上的一个磁场产生线圈、一个感测线圈、一个反相磁场产生线圈等的结构,但是变型例不限于这种结构。变型例还可以应用于包括设置在多条直线上的多个磁场产生线圈等的结构,其中,设置部件的数量和位置没有限制。

此外,作为医用装置,已经对使用捕捉患者体腔内部的图像的囊状内窥镜的装置进行了说明;然而,本发明不限于这种使用囊状内窥镜的装置。本发明可以应用于多种其他类型的医用装置,例如,在患者体腔内释放药品的医用装置;设置有用于获取关于体腔内部的数据的传感器的医用装置;可以留在体腔内较长时间段的医用装置;将用于交换信息等的导线连接到外部的医用装置;等等。

第六到第十五实施例

在上述文献2中,公开了如下的技术:使用多个外部检测装置来检测从设置有LC谐振电路的囊状医用装置发出的电磁,从而检测该囊状医用装置的位置。

然而,在文献2中,存在如下的危险:例如设置在囊状医用装置中的感应驱动或切换用磁体不利地影响LC谐振电路,从而改变LC谐振电路的特性,或者,该磁体屏蔽从LC谐振电路发出的电磁场(感应磁场),从而降低位置检测精度甚至使得不能进行位置检测。此外,存在囊状医用装置为了位置检测而消耗电功率的问题。

在上述文献3中,公开了如下的技术:通过其中安装有磁感应线圈的囊状内窥镜、用于在磁感应线圈中产生感应电流的驱动线圈、以及基于感应电流来获取磁感应线圈和驱动线圈的相对位置的检测装置,检测囊状医用装置的位置。

然而,在上述位置检测技术中,存在如下危险:例如设置在囊状医用装置中的感应驱动或切换用磁体不利地影响磁感应线圈从而改变磁感应线圈的特性,或者屏蔽从磁感应线圈发出的感应磁场从而降低位置检测精度甚至使得不能进行位置检测。此外,存在囊状医用装置为了位置检测而消耗电功率的问题。

在上述文献4中,公开了如下的技术:通过在大致圆柱形的囊状医用装置的圆柱面上形成螺旋突起并且使该囊状医用装置围绕纵轴旋转来驱动该囊状医用装置。通过设置在囊状医用装置中的磁体并且通过外部施加的旋转磁场来旋转地驱动该囊状医用装置。

然而,在上述文献1中,没有说明用于检测囊状医用装置的位置,由此,不能将囊状医用装置驱动并引导到预定位置。

此外,较容易提出一种将上述文献4中描述的囊状医用装置的驱动技术与上述文献2或文献3中公开的位置检测技术相结合的方法,即,与其中内置有引导磁体的囊状医用装置一起采用使用磁感应线圈的磁位置检测系统的方法。

然而,在该方法中,存在如下的危险:引导磁体与磁位置检测系统发生干扰,这使得位置检测系统的性能劣化或者使得不能进行位置检测。此外,用于除了驱动以外的其他目的的磁体也出现相同问题。

上述文献1和5公开了一种用于可移动微型机械的运动控制系统,该运动控制系统包括:产生旋转磁场的磁场产生部;设置有磁体的自动装置(robot)主体,所述磁体接收磁场产生部产生的旋转磁场以通过旋转产生推力;检测自动装置主体的位置的位置检测器;以及磁场重新取向单元,其基于由位置检测器检测到的自动装置主体的位置来改变由磁场产生部产生的旋转磁场的取向,以使其取向为自动装置主体应当沿其移动以到达目标的方向。在上述技术中,在控制自动装置主体(囊状内窥镜)的取向时引导了自动装置主体。

然而,在上述位置检测技术中,因为检测与自动装置主体的旋转轴正交地设置的磁体的极化方向,所以为了识别自动装置主体的取向(例如旋转轴方向),需要使用磁体的不同极化方向而执行位置检测两次或更多次。此外,因为自动装置主体的实际方向并不总是跟随控制自动装置主体的位置和方向的磁场,所以对自动装置主体的引导精度可能下降。

此外,如果在囊状医用装置中设置有用于例如经由磁场与外部装置进行信息交换的线圈,那么,因为磁体改变线圈特性或者磁体屏蔽从线圈发出的磁场,所以存在妨碍这种信息交换等的危险。

为了解决上述问题,可以采用下面的实施例来提供能够在内置有磁体的医用装置中有效地操作磁位置检测系统的医用装置以及医用磁感应及位置检测系统。

第六实施例

现在,参照图43到73,对根据本发明的医用磁感应及位置检测系统的第六实施例进行说明。

图43是示意性地示出根据该实施例的医用磁感应及位置检测装置系统的图。图44是医用磁感应及位置检测装置系统的立体图。

如图43和44所示,医用磁感应及位置检测系统1110主要由以下部件形成:囊状内窥镜(医用装置)1120,其以口服或肛入方式进入患者1的体腔中,以对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)1150,其检测囊状内窥镜1120的位置;磁感应装置1170,其基于检测到的囊状内窥镜1120的位置和来自操作员的指令而引导囊状内窥镜1120;以及图像显示装置1180,其显示从囊状内窥镜1120发送来的图像信号。

如图43所示,磁感应装置1170主要由以下部件形成:三轴引导磁场产生单元(引导磁场产生单元、电磁体)1171,其产生用于驱动并引导囊状内窥镜1120的平行磁场;赫尔姆霍茨线圈驱动器1172,其控制向三轴引导磁场产生单元1171提供的电流的增益;旋转磁场控制电路(磁场取向控制单元)1173,其控制用于驱动并引导囊状内窥镜1120的平行磁场的方向;以及输入装置1174,其向旋转磁场控制电路1173输出操作员输入的囊状内窥镜1120的移动方向。

在这个实施例中,三轴引导磁场产生单元1171被描述为应用于其中线圈对彼此相对并且用于产生平行磁场的电磁体沿三个轴方向设置的线圈单元。此线圈的优选示例可以包括具有沿三个轴方向设置的三个赫尔姆霍茨线圈的赫尔姆霍茨线圈单元。

尽管在这个实施例中假定线圈为赫尔姆霍茨线圈单元来进行说明。但是电磁体的结构不限于赫尔姆霍茨线圈单元,例如图43所示的大致矩形的相对线圈也是可接受的。此外,除了将线圈之间的距离设置为线圈直径的一半以外,也可以自由设置该距离,只要可以在目标空间中获得希望的磁场即可。

此外,除了相对线圈以外,也可以接受任何结构的磁体,只要可以获得希望的磁场即可。

例如,如图91所示,可以通过将电磁体2301到2305各自设置在目标区的一侧、随后在电磁体2301与电磁体2302之间产生磁场来产生沿X轴方向的磁场。类似的是,可以在电磁体2303与电磁体2304之间产生沿Y轴方向的磁场,并且可以在电磁体2305中产生沿Z轴方向的磁场。

使用具有上述结构的电磁体系统,可以提供类似的优点。

如图43和44所示,将三轴引导磁场产生单元1171形成为大致矩形形状。三轴引导磁场产生单元1171包括三对相互相对的赫尔姆霍茨线圈1171X、1171Y和1171Z,赫尔姆霍茨线圈1171X、1171Y和1171Z中的各对被设置为大致正交于图43中的X、Y和Z轴。将被设置为大致正交于X、Y和Z轴的赫尔姆霍茨线圈分别表示为赫尔姆霍茨线圈1171X、1171Y和1171Z。

将赫尔姆霍茨线圈1171X、1171Y和1171Z设置为在其内部形成大致矩形的空间。如图43所示,该矩形空间用作囊状内窥镜1120的工作空间,并且如图44所示,该矩形空间是患者1所处的空间。

赫尔姆霍茨线圈驱动器1172包括分别控制赫尔姆霍茨线圈1171X、1171Y和1171Z的赫尔姆霍茨线圈驱动器1172X、1172Y和1172Z。

将操作员从输入装置1174输入的针对囊状内窥镜1120的移动方向指令和来自位置检测单元1150的表示囊状内窥镜1120当前指向的方向(囊状内窥镜1120的旋转轴(中心轴)R(参照图47)的方向)的数据一起输入到旋转磁场控制电路1173。接着,从旋转磁场控制电路1173输出用于控制赫尔姆霍茨线圈驱动器1172X、1172Y和1172Z的信号,并且将囊状内窥镜1120的旋转相位数据输出到图像显示装置1180。

将用于通过移动操纵杆来指定囊状内窥镜1120的移动方向的输入装置用作输入装置1174。

如上所述,输入装置1174可以使用操纵杆型装置、或者可以使用另一类型的输入装置,如通过推动移动方向按钮来指定移动的方向的输入装置。

如图43所示,位置检测单元1150主要由以下部件形成:驱动线圈(驱动部)1151,其在囊状内窥镜1120中的磁感应线圈(后面要说明)中产生感应磁场;感测线圈(磁场传感器、磁场检测部)1152,其检测在磁感应线圈中产生的感应磁场;以及位置检测装置1150A,其基于感测线圈1152检测到的感应磁场来计算囊状内窥镜1120的位置,并且控制由驱动线圈1151形成的交变磁场。

在位置检测装置1150A与驱动线圈1151之间设置有:正弦波信号发生电路1153,其基于来自位置检测装置1150A的输出而产生AC电流;驱动线圈驱动器1154,其基于来自位置检测装置1150A的输出而放大从正弦波信号发生电路1153输入的AC电流;以及驱动线圈选择器1155,其将AC电流提供给基于来自位置检测装置1150A的输出而选择的驱动线圈1151。

在感测线圈1152与位置检测装置1150A之间设置有:感测线圈选择器(磁场传感器选择单元)1156,其基于来自位置检测装置1150A的输出,从感测线圈1152中选择根据包括囊状内窥镜1120的位置信息等的AC电流;和感测线圈接收电路1157,其从通过感测线圈选择器1156的AC电流提取幅值,并将该幅值输出到位置检测装置1150A。

图45是示出医用磁感应及位置检测系统的剖面的示意图。

在此,如图43和45所示,驱动线圈1151有角度地位于由赫尔姆霍茨线圈1171X、1171Y和1171Z形成的大致矩形工作空间的四个上部(在Z轴的正向上)角处。驱动线圈1151形成连接方形赫尔姆霍茨线圈1171X、1171Y和1171Z的角的大致三角形线圈。通过按这种方式将驱动线圈1151设置在顶部,可以防止驱动线圈1151与患者1之间的干扰。(参见图3)。

如上所述,驱动线圈1151可以为大致三角形线圈,或者可以使用多种形状的线圈,如圆形线圈等。

感测线圈1152被形成为空气芯线圈,由三个平面线圈支承部件1158支承在赫尔姆霍茨线圈1171X、1171Y和1171Z的内侧,这三个平面线圈支承部件1158被设置在面对驱动线圈1151的位置以及沿Y轴方向彼此相对的位置,囊状内窥镜1120的工作空间位于其间。在每一个线圈支承部件1158中按矩阵形式排列有9个感测线圈1152,由此在位置检测单元1150中设置有总计27个感测线圈1152。

图46是示出感测线圈接收电路1157的电路结构的示意图。

如图46所示,感测线圈接收电路1157由以下部件形成:高通滤波器(HPF)1159,其去除包括囊状内窥镜1120的位置信息的输入AC电压中的低频分量;前置放大器1160,其放大所述AC电压;带通滤波器(BPF)1161,其去除经放大的AC电压中包括的高频;放大器(AMP)1162,其放大已经从其去除了高频的AC电压;均方根检测电路(真实RMS转换器)1163,其检测AC电压的振幅,并且提取并输出幅值;A/D转换器1164,其将幅值转换为数字信号;以及存储器1165,其用于临时地存储数字化的幅值。

高通滤波器1159由以下部件形成:设置在从感测线圈1152延伸的一对导线1166A中的电阻器1167;导线1166B,其连接到所述一对导线1166A并且大致在其中央处接地;以及在导线1166B中设置为彼此相对的一对电容器1168,这一对电容器1168之间具有接地点。前置放大器1160分别设置在所述一对导线1166A中,从前置放大器1160输出的AC电压输入到单个带通滤波器1161。存储器1165临时存储从9个感测线圈1152获得的幅值,并且将存储的幅值输出到位置检测单元1150。

如上所述,可以使用均方根检测电路1163来提取AC电压的幅值,可以通过使用整流电路来平滑磁场信息并且检测电压从而检测该幅值,或者,可以使用检测AC电压的峰值的峰值检测电路来检测该幅值。

关于检测到的AC电压的波形,对于施加到驱动线圈1151的波形的相位随着囊状内窥镜1120中的磁感应线圈1142(后面要说明)的存在和位置而变化。可以使用锁定放大器等来检测这种相位变化。

如图43所示,图像显示装置1180由以下部件形成:图像接收电路1181,其接收从囊状内窥镜1120发送来的图像;和显示部1182,其基于接收的图像信号以及来自旋转磁场控制电路1173的信号而显示图像。

图47是示出囊状内窥镜1120的构造的示意图。

如图47所示,囊状内窥镜1120主要由以下部件形成:外壳1121,其在其内部容纳了多种装置;图像形成部(生物信息获取单元)1130,其形成患者体腔中的通道的内表面的图像;电池(电源单元)1139,其用于驱动图像形成部1130;感应磁场产生部(感应磁场产生单元)1140,其通过上述驱动线圈1151而产生感应磁场;以及引导磁体(磁体)1145,其驱动并引导囊状内窥镜1120。

外壳1121由以下部件形成:红外线透射圆柱形囊状主体(下文中简写为主体)1122,其中心轴限定了囊状内窥镜1120的旋转轴(中心轴)R;透明半球状前端部1123,其覆盖主体1122的前端部;以及半球状后端部1124,其覆盖主体的后端部,从而形成具有水密结构的密封囊状容器。

在外壳1121的主体的外周面上设置有螺旋部1125,在该螺旋部1125中围绕旋转轴R按螺旋形式缠绕有剖面为圆形的导线。

图像形成部1130主要由以下部件形成:板1136A,其被设置为与旋转轴R大致正交;图像传感器1131,其被设置在板1136A的前端部1123侧的表面上;透镜组1132,其将患者体腔内的通道的内表面的像形成在图像传感器1131上;LED(发光二极管)1133,其照亮体腔内的通道的内表面;信号处理部1134,其被设置在板1136A的后端部1124侧的表面上;以及无线电装置1135,其向图像显示装置1180发送图像信号。

信号处理部1134经由板1136A、1136B和1136C以及柔性板1137A电连接到电池1139,经由板1136A电连接到图像传感器1131,经由板1136A、柔性板1137A以及支承部件1138电连接到LED 1133。此外,信号处理部1134压缩图像传感器1131获取的图像信号,临时存储它(存储器),并且将压缩的图像信号从无线电装置1135向外部发送,此外,它基于来自后面要说明的开关部1146的信号来控制图像传感器1131和LED 1133的开/关状态。

图像传感器1131将经由前端部1123和透镜组1132形成的图像转换为电信号(图像信号)并且将其输出到信号处理部1134。例如可以将CMOS(互补型金属氧化物半导体)器件或CCD(电荷耦合器件)用作这种图像传感器1131。

此外,在支承部件1138上,围绕旋转轴R沿周向按其间设置有间隙的方式从板1136A朝向前端部1123地设置有多个LED 1133。

在信号处理部1134的后端部1124侧,在板1136B与1136C之间设置有电池1139。

在电池1139的后端部1124侧,设置有设置在板1136C上的开关部1146。开关部1146具有红外线传感器1147,经由板1136A和1136C以及柔性板1137A电连接到信号处理部1134,并且经由板1136B、1136C以及柔性板1137A电连接到电池1139。

此外,围绕旋转轴R沿周向按规则的间隔设置有多个开关部1146,红外线传感器1147被设置为面对径向的外侧。在这个实施例中,已经描述了在其中设置有4个开关部1146的示例,但是开关部1146的数量不限于4个;可以设置任何数量。

在板1136D的后端部1124侧的表面上设置有无线电装置1135。无线电装置1135经由板1136A、1136C和1136D以及柔性板1137A和1137B电连接到信号处理部1134。

图48是例示设置在囊状内窥镜1120中的引导磁体1145的结构的图。图48A是从囊状内窥镜1120的前端部1123侧看到的引导磁体1145的图,而图48B是从侧面看到的引导磁体1145的图。

如图47所示,引导磁体1145设置在无线电装置1135的后端部1124侧处。将引导磁体1145设置为使其重心位于旋转轴R上并且使其沿与旋转轴R正交的方向(例如,图47中的上下方向)磁化。

因此,引导磁体1145在后面要说明的坡莫合金的位置处形成的磁场与旋转轴R大致正交。

如图48A和48B所示,引导磁体1145包括形成为大致板状的一个大尺寸磁片(磁片)1145a、两个中尺寸磁片(磁片)1145b、两个小尺寸磁片(磁片)1145c、以及插在磁片1145a、1145b和1145c之间的诸如乙烯基片的绝缘体(绝缘材料)1145d,并且被构建得具有大致圆柱形状。此外,使磁片1145a、1145b和1145c沿板厚度方向(图中的上下方向)磁化,图中箭头所指的方向代表磁化方向。更具体地说,箭头所指的侧对应于北极,相对侧对应于南极。

根据囊状内窥镜1120的尺寸,引导磁体1145的典型形状和尺寸如下:圆柱体直径为大约6mm到大约8mm,圆柱体高度为大约6mm到大约8mm。更具体地说,可以将直径为8mm且高度为6mm的圆柱体或者直径为6mm且高度为8mm的圆柱用于引导磁体1145。此外,磁片1145a的材料例如是钕-钴,但不限于钕-钴。

如上所述,引导磁体可以由磁片1145a、1145b和1145c以及绝缘体1145d组成。另选的是,引导磁体1145可以仅由磁片1145a、1145b和1145c组成。此外,引导磁体1145可以由单个圆柱形磁体形成。

如图47所示,将感应磁场产生部1140设置在主体1122与电池1139等之间的圆柱形空间中。

如图47和49所示,感应磁场产生部1140由以下部件形成:芯部件1141A,其形成为中心轴与旋转轴R大致一致的圆柱形状;磁感应线圈(内置线圈)1142,其设置在芯部件1141A的外周部上;坡莫合金膜(芯)1141B,其设置在芯部件1141A与磁感应线圈1142之间;以及电容器(该图中未示出),其电连接到磁感应线圈1142,并构成LC谐振电路(电路)1143。

线圈1142和坡莫合金膜1141B位于由引导磁体1145的磁场在坡莫合金膜1141B中形成的磁通量密度等于或小于坡莫合金膜1145B中的饱和磁通量密度的一半的位置处。更具体地说,线圈1142和坡莫合金膜1141B设置在离开引导磁体1145至少大约5mm、优选为大约10mm或更多的位置处。如图49所示,通过将作为磁性材料的坡莫合金形成为片状薄膜来产生坡莫合金膜1141B。此外,当将坡莫合金膜1141B卷绕在芯部件1141A周围时,产生一间隙t。

如图49所示,因为坡莫合金膜1141B形成为以旋转轴R作为其中心轴的大致圆柱状薄膜,所以在坡莫合金膜1141B中沿旋转轴R的方向的去磁因数小于沿其他方向的去磁因数。

如上所述,坡莫合金膜1141B可以由坡莫合金形成,或者可以由同样是磁性材料的铁或镍形成。

如上所述,LC谐振电路1143可以由磁感应线圈1142和电容器形成,或者,LC谐振电路1143可以是基于因磁感应线圈1142的自谐振的谐振电路,而不使用电容器。

接下来,对具有上述构造的医用磁感应及位置检测系统1110的操作进行说明。

首先,对医用磁感应及位置检测系统1110的操作的概况进行说明。

如图43和44所示,囊状内窥镜1120以口服或肛入方式插入躺在位置检测单元1150和磁感应装置1170内部的患者1的体腔中。通过位置检测单元1150检测插入的囊状内窥镜1120的位置,并且通过磁感应装置1170将它引导到患者1的体腔中的通道内部的感染区附近。囊状内窥镜1120在被引导到感染区以及在感染区附近时,形成体腔中的通道的内表面的图像。接着,将针对体腔内部通道的形成了图像的内表面的数据和针对感染区附近的数据发送到图像显示装置1180。图像显示装置1180在显示部1182上显示发送来的图像。

现在,对位置检测单元1150的操作进行说明。

如图43所示,在位置检测单元1150中,正弦波发生电路1153基于来自位置检测装置1150A的输出而产生AC电流,并将该AC电流输出到驱动线圈驱动器1154。产生的AC电流的频率处于几kHz到100KHz的频率范围内,并且频率在上述范围内随时间而变化(摆动),从而包括后面要说明的谐振频率。摆动范围不限于上述范围;它可以是更窄的范围,或者它可以是更宽的范围,并没有特定限制。

作为对每次都执行摆动的替代,可以首先通过摆动而确定测量频率,接着将频率固定于该测量频率。通过这样做,可以提高测量速度。此外,可以周期性地执行摆动以更新确定的测量频率。这用作针对谐振频率随温度而变化的措施。

在驱动线圈驱动器1154中基于来自位置检测装置1150A的指令放大AC信号,并将其输出到驱动线圈选择器1155。在驱动线圈选择器1155中将放大的AC电流提供给由位置检测装置1150A选择的驱动线圈1151。接着,向驱动线圈1151提供的AC电流在囊状内窥镜1120的工作空间中产生交变磁场。

由于该交变磁场,在位于该交变磁场中的囊状内窥镜1120的磁感应线圈1142中产生感应电动势,并且感应电流在其中流动。当感应电流在磁感应线圈1142中流动时,该感应电流产生感应磁场。

因为磁感应线圈1142和电容器一起形成谐振电路1143,所以当交变磁场的周期对应于谐振电路1143的谐振频率时,在谐振电路1143(磁感应线圈1142)中流动的感应电流增大,并且产生的感应磁场变强。此外,因为坡莫合金膜1141B设置在磁感应线圈1142的内侧,所以由磁感应线圈1142产生的感应磁场甚至变得更强。

上述感应的磁场在感测线圈1152中产生感应电动势,在感测线圈1152中产生包括囊状内窥镜1120的位置信息等的AC电压(磁场信息)。该AC电压经由感测线圈选择器1156输入到感测线圈接收电路1157,在感测线圈接收电路1157提取AC电压的幅值(振幅信息)。

如图46所示,首先,通过高通滤波器1159去除向感测线圈接收电路1157输入的AC电压中包括的低频分量,接着通过前置放大器1160放大该AC电压。此后,通过带通滤波器1161去除高频,并且通过放大器1162将AC电压放大。通过均方根检测电路1163提取已经按这种方式从其去除了不想要分量的AC电压的幅值。通过A/D转换器1164将提取的幅值转换为数字信号,并将其存储在存储器1165中。

存储器1165例如存储与其中正弦波信号发生电路1153中产生的正弦波信号摆动得接近LC谐振电路1143的谐振频率的一个时段对应的幅值,并且将对于一个时段的幅值一次输出给位置检测装置1150A。

如图50所示,AC电压的幅值根据驱动线圈1151产生的交变磁场与谐振电路1143的谐振频率之间的关系而剧烈变化。图50在横轴上示出了交变磁场的频率,并且在纵轴上示出了在谐振电路1143中流动的AC电压的增益(dBm)和相位(度)的变化。其示出了由实线表示的增益变化在比谐振频率低的频率处出现最大值,在谐振频率处为零,在比谐振频率高的频率处出现最小值。此外,它示出了由虚线表示的相位变化在谐振频率处下降最多。

根据测量条件,可能存在增益在比谐振频率低的频率处出现最小值并且在比谐振频率高的频率处出现最大值的情况,以及相位在谐振频率处达到峰值的情况。

将提取的幅值输出到位置检测装置1150A,位置检测装置1150A采用谐振频率附近的幅值的最大值与最小值之间的振幅差作为来自感测线圈1152的输出。接着,位置检测装置1150A通过基于从多个感测线圈1152获得的振幅差对涉及囊状内窥镜1120的位置、方向以及磁场强度的联立方程进行求解,从而获得囊状内窥镜1120的位置等。

由此,通过按这种方式将感测线圈1152的输出设置为振幅差,可以抵消因环境条件(例如温度)造成的磁场强度变化而导致的振幅变化,由此可以按可靠的精度获得囊状内窥镜1120的位置,而不会受环境条件的影响。

关于囊状内窥镜1120的位置等的信息包括6条信息,例如,X、Y和Z位置坐标,关于彼此正交并且与囊状内窥镜1120的中心轴(旋转轴)正交的轴的旋转相位φ和θ,以及磁感应线圈1142产生的感应磁场的强度。

为了通过计算来估计这6条信息,至少6个感测线圈1152的输出是必要的。因为使用设置在至少一个平面中的9个感测线圈1152的输出来估计囊状内窥镜1120的位置,所以可以通过计算获得上述6条信息。

位置检测装置1150A基于通过计算获得的囊状内窥镜1120的位置,向驱动线圈驱动器1154报告提供给驱动线圈1151的AC电流的放大因数。将该放大因数设置为使得感测线圈1152可以检测到由磁感应线圈1142产生的感应磁场。

此外,位置检测装置1150A选择用于产生磁场的驱动线圈1151,并且向驱动线圈选择器1155输出用于向选择的驱动线圈1151提供AC电流的指令。如图51所示,在选择驱动线圈1151的方法中,排除这样的驱动线圈1151:连接该驱动线圈1151和磁感应线圈1142的直线(驱动线圈1151的取向)与磁感应线圈1142的中心轴(囊状内窥镜1120的旋转轴R)大致正交。此外,如图52所示,选择驱动线圈1151以使得按作用于磁感应线圈4112上的磁场的取向线性无关的方式向三个驱动线圈1151提供AC电流。

一种更优选的方法是如下的方法:忽略由其产生的磁力线的取向与磁感应线圈1142的中心轴大致正交的驱动线圈1151。

如上所述,可以使用驱动线圈选择器1155来限制形成交变磁场的驱动线圈1151的数量,或者,可以不使用驱动线圈选择器1155,而将驱动线圈1151的数量初始设置为三个。

如上所述,可以选择三个驱动线圈1151来形成交变磁场,或者如图53所示,可以通过所有的驱动线圈1151来产生交变磁场。

此外,位置检测装置1150A选择要使用其检测到的振幅差来估计囊状内窥镜1120的位置的感测线圈1152,并且向感测线圈选择器1156输出用于将来自所选择的感测线圈1152的AC电流输入到感测线圈接收电路1157的指令。

选择感测线圈1152的方法没有特定限制。例如,如图51所示,可以选择与驱动线圈1151相对并且囊状内窥镜1120位于驱动线圈1151与其之间的感测线圈1152,或者,如图54所示,可以选择设置在与驱动线圈1151所在平面相邻的相互面对的平面中的感测线圈1152。

此外,可以选择基于获得的囊状内窥镜1120的位置和方向而有望感应出大AC电流的感测线圈1152,如位于囊状内窥镜1120附近的感测线圈1152。

如上所述,可以通过感测线圈选择器1156来选择设置在三个线圈支承部件1158上的感测线圈1152中感应出的AC电流,或者,如图53和54所示,可以预先将提供的线圈支承部件1158的数量设置为一个或者两个,而不使用感测线圈选择器1156。

接下来,对磁感应装置1170的操作进行说明。

如图43所示,在磁感应装置1170中,首先,操作员经由输入装置1174向旋转磁场控制电路1173输入针对囊状内窥镜1120的引导方向。在旋转磁场控制电路1173中,基于输入的引导方向和从位置检测单元1150输入的囊状内窥镜1120的取向(旋转轴方向)来确定要向囊状内窥镜1120施加的平行磁场的取向和旋转方向。

接着,为了产生平行磁场的取向,计算需要由赫尔姆霍茨线圈1171X、1171Y和1171Z产生的磁场的强度,并且计算产生这些磁场所需要的电流。

将向单个赫尔姆霍茨线圈1171X、1171Y和1171Z提供的电流数据输出到对应的赫尔姆霍茨线圈驱动器1172X、1172Y和1172Z,赫尔姆霍茨线圈驱动器1172X、1172Y和1172Z基于输入的数据执行对电流的放大控制,并且将电流提供给对应的赫尔姆霍茨线圈1171X、1171Y和1171Z。

向其提供了电流的赫尔姆霍茨线圈1171X、1171Y和1171Z根据相应的电流值产生磁场,通过合成这些磁场,产生具有由旋转磁场控制电路1173确定的磁场取向的平行磁场。

在囊状内窥镜1120中设置有引导磁体1145,并且如下所述,基于作用于引导磁体1145上的力和上述平行磁场来控制囊状内窥镜1120的取向(旋转轴方向)。此外,通过将平行磁场的旋转周期控制成大约0Hz到几Hz并且对平行磁场的旋转方向进行控制,从而控制围绕囊状内窥镜1120的旋转轴的旋转方向,并且还控制囊状内窥镜1120的移动方向和移动速度。

接下来,对囊状内窥镜1120的操作进行说明。

如图47所示,在囊状内窥镜1120中,首先,将红外光照射到开关部1146的红外线传感器1147上,开关部1146向信号处理部1134输出信号。当信号处理部1134接收到来自开关部1146的信号时,从电池1139向内置于囊状内窥镜1120中的图像传感器1131、LED 1133、无线电装置1135以及信号处理部1134本身提供电流,这些部件启动。

图像传感器1131形成患者1的体腔中的通道内的被LED 1133照亮的壁面的图像,将该图像转换为电信号,并将该电信号输出到信号处理部1134。信号处理部1134压缩输入的图像,临时存储它,并且将它输出到无线电装置1135。输入到无线电装置1135的压缩图像信号作为电磁波发送到图像显示装置1180。

囊状内窥镜1120可以通过借助于设置在外壳1121的外周上的螺旋部1125围绕旋转轴R旋转而向前端部1123或后端部1124移动。通过围绕旋转轴R的旋转方向和螺旋部1125的旋转方向来确定移动的方向。

接下来,对图像显示装置1180的操作进行说明。

如图43所示,在图像显示装置1180中,首先,图像接收电路1181接收从囊状内窥镜1120发送来的压缩图像信号,并将该图像信号输出到显示部1182。在图像接收电路1181或显示部1182中对该压缩图像信号进行重构,并且通过显示部1182对其进行显示。

此外,显示部1182基于从旋转磁场控制电路1173输入的囊状内窥镜1120的旋转相位数据,沿与囊状内窥镜1120的旋转方向相反的方向执行对图像信号的旋转处理,并显示图像信号。

现在说明对于磁感应线圈的输出随着设置在磁感应线圈中的物体而变化的测试。

图55是例示用于当前测试的实验装置的概要的图。

如图55所示,实验装置1201包括:要测试的磁感应线圈1142;用于向磁感应线圈1142施加磁场的驱动线圈1151;用于检测在磁感应线圈1142中产生的感应磁场的感测线圈1152;用于分析由感测线圈1152检测到的信号的网络分析器1202;以及用于放大网络分析器1202的输出并且将它输出到驱动线圈1151的放大器1203。

图56是例示用于当前测试的磁感应线圈1142和设置在磁感应线圈1142中的物体的图。图56A是例示磁感应线圈1142和电池1139的图,图56B是例示磁感应线圈1142、电池1139以及引导磁体1145的图。

如图56A和56B所示,磁感应线圈1142设置在内径为大约10mm的圆柱状坡莫合金膜1141B的周面上,并且形成为具有大约30mm的长度。

用于当前测试的电池1139由三个串联设置的纽扣式电池形成。

如图56B所示,用于当前测试的引导磁体1145是直径为大约8mm且长度为大约6mm的大致圆柱状物体,并且由钕-钴形成。

在该测试中,磁感应线圈1142与电池1139之间的位置关系以及磁感应线圈1142、电池1139和引导磁体1145之间的位置关系如图56A和56B所示。

图57和58是描绘由驱动线圈1151形成的交变磁场的频率与增益和相位的变化之间的关系的图。

在图57和58中,A1和A2分别表示当仅有磁感应线圈1142时测量到的增益变化和相位变化;B1和B2分别表示当在磁感应线圈1142中设置有电池1139(参照图56A)时测量到的增益变化和相位变化;C1和C2分别表示当在磁感应线圈1142中设置有电池1139和引导磁体1145(参照图56B)时测量到的增益变化和相位变化。

如图57和58所示,在仅有磁感应线圈1142时的测量情况(A1、A2)与在磁感应线圈1142中设置有电池1139的情况(B1、B2)之间没有发现差异。另一方面,在磁感应线圈1142中设置有电池1139和引导磁体1145的情况(C1、C2)下,与其他情况相比,出现增益变化和相位变化的频率变得更接近高频侧,并且增益变化的范围更小。

结果,发现了在磁感应线圈1142中设置电池1139不会影响磁感应线圈1142的特性,而设置引导磁体1145往往使得磁感应线圈1142的输出变弱。

现在说明对于磁感应线圈的输出随着距引导磁体的距离而变化的测试。

如同上述测试一样,将图55所示的实验装置1201用于该测试。

图59是例示在当前测试中磁感应线圈1142与引导磁体1145之间的位置关系的图。图60是例示用于当前测试的实心引导磁体的结构的图。图60A是引导磁体的正面图,图60B是引导磁体的侧面图。

如图59所示,磁感应线圈1142设置在内径为大约10mm的圆柱状坡莫合金膜1141B的周面上,并且形成为具有大约30mm的长度。

如图60A和60B所示,实心引导磁体1145形成为大致圆柱形状,并且由大致形成为板状的一个大尺寸磁片1145a、两个中尺寸磁片1145b以及两个小尺寸磁片1145c构成。大尺寸磁片1145a、中尺寸磁片1145b以及小尺寸磁片1145c的宽度分别为大约9mm、大约7mm以及大约5mm。磁片的厚度和长度相同,更具体地说,分别为大约1.5mm和大约8mm。此外,磁片由钕-钴形成并且沿其厚度方向磁化。图中的箭头所指的侧对应于北极,相对侧对应于南极。

图61A是示出用于当前测试的中空引导磁体的结构的侧面图。图61B是大尺寸中空引导磁体的侧面图。

如图61A所示,中空引导磁体1145形成为外径大约13mm、内径大约11mm、长度大约18mm的圆柱状,并且由钕-钴形成。如图61B所示,大尺寸引导磁体1145形成为外径大约16mm、内径大约11mm、长度大约18mm的圆柱体,并且由钕-钴形成。

图62是描绘在由五个磁片1145a、1145b、1145b、1145c和1145c构成的引导磁体1145中由驱动线圈1151形成的交变磁场的频率与感测线圈输出之间的关系的图。

在该图中,D1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;D2是当引导磁体1145与磁感应线圈1142之间的距离为10mm时的感测线圈输出的曲线图;D3是示出当上述距离为5mm时的感测线圈输出的曲线图;D4是示出当上述距离为0mm时的感测线圈输出的曲线图;D5是示出当上述距离为-5mm(引导磁体1145在磁感应线圈1142内部)时的感测线圈输出的曲线图;D6是示出当上述距离为-10mm时的感测线圈输出的曲线图;D7是示出当上述距离为-15mm时的感测线圈输出的曲线图;D8是示出当上述距离为-18mm时的感测线圈输出的曲线图。

如图62所示,随着引导磁体1145与磁感应线圈1142之间的距离变小,输出变化范围减小,并且输出发生变化的频率向高频侧移动。

图63是示出在引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成并且在磁片1145a、1145b和1145c之间插有用作绝缘体的乙烯基片的情况下感测线圈输出与由驱动线圈1151形成的交变磁场的频率之间的关系的图。

在该图中,E1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;E2是当引导磁体1145与磁感应线圈1142之间的距离为10mm时的感测线圈输出的曲线图;E3是示出当上述距离为5mm时的感测线圈输出的曲线图;E4是示出当上述距离为0mm时的感测线圈输出的曲线图;E5是示出当上述距离为-5mm(引导磁体1145在磁感应线圈1142内部)时的感测线圈输出的曲线图;E6是示出当上述距离为-10mm时的感测线圈输出的曲线图;E7是示出当上述距离为-15mm时的感测线圈输出的曲线图;E8是示出当上述距离为-18mm时的感测线圈输出的曲线图。

如图63所示,随着将绝缘体插入磁片1145a、1145b和1145c之间,当距离为10mm时(E2)的输出变化范围的减小变小,并且输出发生变化的频率向高频侧的移动减小。

图64是示出在引导磁体1145由一个大尺寸磁片1145a以及两个中尺寸磁片1145b和1145b构成并且在磁片1145a和1145b之间插有用作绝缘体的乙烯基片的情况下感测线圈输出与由驱动线圈1151形成的交变磁场的频率之间的关系的图。

在该曲线图中,F1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;F2是当引导磁体1145与磁感应线圈1142之间的距离为10mm时的感测线圈输出的曲线图;F3是示出当上述距离为5mm时的感测线圈输出的曲线图;F4是示出当上述距离为0mm时的感测线圈输出的曲线图;F5是示出当上述距离为-5mm(引导磁体1145在磁感应线圈1142内部)时的感测线圈输出的曲线图;F6是示出当上述距离为-10mm时的感测线圈输出的曲线图;F7是示出当上述距离为-15mm时的感测线圈输出的曲线图;F8是示出当上述距离为-18mm时的感测线圈输出的曲线图。

如图64所示,随着引导磁体1145的体积变小,当距离为10mm时(F2)的输出变化范围的减小变小,并且输出发生变化的频率向高频侧的移动减小得更多。

图65是示出在由一个大尺寸磁片1145a构成的引导磁体1145中由驱动线圈1151形成的交变磁场的频率与感测线圈输出之间的关系的图。

在该图中,G1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;G2是当引导磁体1145与磁感应线圈1142之间的距离为10mm时的感测线圈输出的曲线图;G3是示出当上述距离为5mm时的感测线圈输出的曲线图;G4是示出当上述距离为0mm时的感测线圈输出的曲线图;G5是示出当上述距离为-5mm(引导磁体1145在磁感应线圈1142内部)时的感测线圈输出的曲线图;G6是示出当上述距离为-10mm时的感测线圈输出的曲线图;G7是示出当上述距离为-15mm时的感测线圈输出的曲线图;G8是示出当上述距离为-18mm时的感测线圈输出的曲线图。

如图65所示,随着引导磁体1145的体积变得甚至更小,在距离为10mm的情况下(G2)的曲线图变得与去除了引导磁体1145的情况下(G1)的曲线图几乎相同,在其他条件下(例如,G3)的输出变化范围的减小变小,并且输出发生变化的频率向高频侧的移动减小。

图66到68是示出按照引导磁体1145与磁感应线圈1142之间的距离分类的上述结果的图。

图66是示出当引导磁体1145与磁感应线圈1142之间的距离为0mm时的结果的图。在该图中,H1是示出当不存在引导磁体1145时的结果的曲线图;H2是示出引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成时的结果的曲线图;H3是示出引导磁体1145在五个磁片1145a、1145b、1145b、1145c和1145c之间设置有绝缘体时的结果的曲线图:H4是示出引导磁体1145由其间设置有绝缘体的三个磁片1145a、1145b和1145b构成时的结果的曲线图;H5是示出引导磁体1145由一个磁片1145a构成时的结果的曲线图。

如图66所示,当存在引导磁体1145时,输出变化范围减小,并且输出发生变化的频率向高频侧移动。

图67是示出当引导磁体1145与磁感应线圈1142之间的距离为5mm时的结果的图。在该图中,J1是示出当不存在引导磁体1145时的结果的曲线图;J2是示出引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成时的结果的曲线图;J3是示出引导磁体1145在五个磁片1145a、1145b、1145b、1145c和1145c之间设置有绝缘体时的结果的曲线图:J4是示出引导磁体1145由其间设置有绝缘体的三个磁片1145a、1145b和1145b构成时的结果的曲线图;J5是示出引导磁体1145由一个磁片1145a构成时的结果的曲线图。

如图67所示,当上述距离变大时,输出变化范围的减小变小,并且输出发生变化的频率向高频侧的移动减小。

图68是示出当引导磁体1145与磁感应线圈1142之间的距离为10mm时的结果的图。在该图中,K1是示出当不存在引导磁体1145时的结果的曲线图;K2是示出引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成时的结果的曲线图;K3是示出引导磁体1145在五个磁片1145a、1145b、1145b、1145c和1145c之间设置有绝缘体时的结果的曲线图:K4是示出引导磁体1145由其间设置有绝缘体的三个磁片1145a、1145b和1145b构成时的结果的曲线图;K5是示出引导磁体1145由一个磁片1145a构成时的结果的曲线图。

如图68所示,当上述距离变大时,输出变化范围的减小变得更小,并且输出发生变化的频率向高频侧的移动减小得更多。

图69是描绘在中空引导磁体1145(参照图61A)中由驱动线圈1151形成的交变磁场的频率与感测线圈输出之间的关系的图。

在该图中,L1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;L2是示出当中空引导磁体1145与磁感应线圈1142之间的距离为15mm时的感测线圈输出的曲线图;L3是示出当上述距离为12mm时的感测线圈输出的曲线图;L4是示出当上述距离为10mm时的感测线圈输出的曲线图;L5是示出当上述距离为8mm时的感测线圈输出的曲线图;L6是示出当上述距离为5mm时的感测线圈输出的曲线图;L7是示出当上述距离为2mm时的感测线圈输出的曲线图。

如图69所示,随着中空引导磁体1145与磁感应线圈1142之间的距离变大,输出变化范围变大,并且输出发生变化的频率向低频侧移动。

图70是描绘在大尺寸中空引导磁体1145(参照图61B)中由驱动线圈1151形成的交变磁场的频率与感测线圈之间的关系的图。

在该图中,M1是示出当去除了引导磁体1145时的感测线圈输出的曲线图;M2是示出当大尺寸中空引导磁体1145与磁感应线圈1142之间的距离为15mm时的感测线圈输出的曲线图;M3是示出当上述距离为12mm时的感测线圈输出的曲线图;M4是示出当上述距离为10mm时的感测线圈输出的曲线图;M5是示出当上述距离为8mm时的感测线圈输出的曲线图;M6是示出当上述距离为5mm时的感测线圈输出的曲线图;M7是示出当上述距离为2mm时的感测线圈输出的曲线图。

如图70所示,随着大尺寸中空引导磁体1145与磁感应线圈1142之间的距离变大,输出变化范围变大,并且输出发生变化的频率向低频侧移动。

图71是示出按照引导磁体1145与磁感应线圈1142之间的距离以及磁感应线圈1142的输出振幅的幅度分类的上述结果的图。在此,引导磁体1145与磁感应线圈1142之间的距离表示从引导磁体1145的端面到磁感应线圈1142的中心的距离。此外,磁感应线圈1142的输出振幅的幅度是相对于不存在引导磁体1145时的输出振幅来表示的。

在该图中,N1是示出引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成时的结果的曲线图;N2是示出引导磁体1145由其间设置有绝缘体的五个磁片1145a、1145b、1145b、1145c和1145c构成时的结果的曲线图;N3是示出引导磁体1145由其间设置有绝缘体的三个磁片1145a、1145b和1145b构成时的结果的曲线图;N4是示出引导磁体1145由一个磁片1145a构成时的结果的曲线图;N5是示出中空引导磁体1145时的结果的曲线图;N6是示出大尺寸中空引导磁体1145时的结果的曲线图。

如图71所示,在所有情况中,随着上述距离变大,磁感应线圈1142的输出振幅变大。此外,随着引导磁体1145的体积变小,磁感应线圈1142的输出振幅变大。

更具体地说,即使使用由五个磁片1145a、1145b、1145b、1145c和1145c构成的引导磁体1145(其是内置在囊状内窥镜1120中的相对较大的组件)或者大尺寸中空引导磁体1145,通过将引导磁体1145与磁感应线圈1142之间的距离设置为10mm,也可以将感测线圈1152的输出的减小控制到大约50%。

此外,因为圆柱形引导磁体(中空引导磁体、大尺寸中空引导磁体)使得磁感应线圈1142中的磁场变得弱于实心引导磁体,所以可以使用圆柱形引导磁体来使得引导磁体1145与磁感应线圈1142之间的距离更小。另选的是,可以增大圆柱形磁体的体积。

结合上述结果来说明对由引导磁体1145形成的磁场在磁感应线圈1142的中心处的强度的测量。

图72是概括地例示用于测量由引导磁体1145形成的磁场强度的装置的图。如图72所示,将用于测量引导磁体1145的磁场强度的高斯计1211设置为使其传感器部1212大致对应于引导磁体1145的中心。因此,引导磁体1145的磁场与高斯计1211的传感器部1212正交地相交。

此外,当前测量中的距离表示从引导磁体1145的端面到传感器部1212的中心的距离。

图73是描绘由引导磁体形成的磁场在磁感应线圈1142的中央处的强度与磁感应线圈1142的输出振幅的幅度之间的关系的图。输出振幅的幅度是相对于不存在引导磁体1145时的振幅来表示的。

在该图中,菱形(◇)表示引导磁体1145由五个磁片1145a、1145b、1145b、1145c和1145c构成时的测量结果;方形(□)表示引导磁体1145由其间设置有绝缘体的五个磁片1145a、1145b、1145b、1145c和1145c构成时的测量结果;三角形(△)表示引导磁体1145由其间设置有绝缘体的三个磁片1145a、1145b和1145b构成时的测量结果;倒三角形()表示引导磁体1145由一个磁片1145a构成时的测量结果;圆形(○)表示中空引导磁体1145时的测量结果;双圆形(◎)表示大尺寸中空引导磁体1145时的测量结果。图中的P表示根据上述测量点获得的近似曲线。

如图73所示,无论引导磁体1145的形状和体积如何,磁感应线圈1142的输出振幅的幅度都随着磁感应线圈1142的中央处的磁场强度增大而减小。更具体地说,如果在磁感应线圈1142的中央处产生的磁场的强度为大约5mT,则可以将感测线圈1152的输出的减小控制到大约50%。

因此,通过根据在磁感应线圈1142的中央处由引导磁体1145形成的磁场强度来确定引导磁体1145与磁感应线圈1142之间的设置距离,可以防止磁感应线圈1142的输出振幅下降,由此,可以在要使用感测线圈1152检测磁感应线圈1142的位置时更可靠地防止出现问题。

现在,对当在磁感应线圈1142的位置处形成有引导磁体1145的静态磁场和驱动线圈1151的交变磁场时在坡莫合金膜1141B中形成的磁场等进行说明。

图74是描绘坡莫合金膜1141B中的磁滞回线等的图。

在图74中,由实曲线P1和P2代表的磁化曲线表示当在坡莫合金膜1141B的位置处形成有引导磁体1145的静态磁场时的特性。

磁化曲线P1是初始磁化曲线P1,其表示当最初使引导磁体1145靠近坡莫合金膜1141B时坡莫合金膜1141B中的静态磁场与磁通量密度之间的关系。磁化曲线P2表示磁滞回线。

在图74中的磁滞回线中,横轴表示在坡莫合金膜1141B的位置处形成的磁场的强度,纵轴表示在坡莫合金膜1141B中形成的磁通量密度。

此外,在图74中,由虚直线Q1、Q2和Q3代表的磁化曲线表示当在坡莫合金膜1141B的位置处形成有驱动线圈1151的交变磁场时的特性。

直线Q1表示当在坡莫合金膜1141B的位置处没有形成静态磁场的情况下形成有交变磁场时的磁化曲线。直线Q2表示当在坡莫合金膜1141B的位置处形成有大约一半饱和磁场强度(Hc)的静态磁场的情况下形成有交变磁场时的磁化曲线。直线Q2表示当在坡莫合金膜1141B的位置处形成有饱和磁场强度(Hc)的静态磁场的情况下形成有交变磁场时的磁化曲线。直线Q1、Q2和Q3中的每一个的斜度表示可逆磁化率。

图75是示出坡莫合金膜1141B中的可逆磁化率的曲线图。在图75中,横轴表示在坡莫合金膜1141B的位置处形成的磁场的强度,纵轴表示与在坡莫合金膜1141B的位置处形成的磁场相对的可逆磁化率。

如图75所示,可逆磁化率在坡莫合金膜1141B的位置处没有形成磁场的状态下出现最大值Xα,并且随着磁场强度上升而下降。在坡莫合金膜1141B的位置处形成有饱和磁场强度(Hc)的磁场的状态下,可逆磁化率为0。

因此,在图74中,因为直线Q1对应于在坡莫合金膜1141B的位置处没有形成静态磁场的情况,所以它对于横轴来说是梯度等于可逆磁化率Xα的直线。直线Q1在纵轴上的投影长度t1表示因坡莫合金膜1141B中的交变磁场而出现的磁通量密度变化范围。

如图74和75所示,直线Q2和Q3的斜率随着在坡莫合金膜1141B的位置处形成的磁场的强度变高而变小。因此,直线Q2和Q3在纵轴上的投影长度t2和t3也变小,表示因坡莫合金膜1141B中的交变磁场而出现的磁通量密度变化范围也变小。

这些直线Q1、Q2和Q3的投影长度t1、t2和t3与磁感应线圈1142形成的感应磁场的强度相关,由此与感测线圈输出相关。更具体地说,作为图62所示的感测线圈输出的示例,随着上述投影长度t1、t2和t3变小,感测线圈输出从D1变化到D8,表示感测线圈输出的最大值与最小值之间的差变小。

当坡莫合金膜1141B的位置处的磁场强度等于饱和磁场强度时,如上述投影长度t3和感测线圈输出D8所示,坡莫合金膜1141B几乎不起作用,并且,磁感应线圈1142表现出与空气芯线圈的性能相似的性能。

图76是例示坡莫合金膜1141B中的有效磁场的强度的示意图。

如图76所示,当在坡莫合金膜1141B的位置处形成有引导磁体1145的外部静态磁场(Hex)时,坡莫合金膜1141B被磁化(I),并在其表面上出现N(+)极和S(-)极。

同时,由于在表面上产生N(+)极和S(-)极,在坡莫合金膜1141B中形成有由如下等式表示的去磁场(Hd)。

Hd=N(I/μ0)                             …(1)

其中,N为坡莫合金膜1141B中的沿静态磁场(Hex)方向的去磁因数,μ0为真空中的导磁率。

通过从引导磁体1145的静态磁场(Hex)减去去磁场(Hd),获得在坡莫合金膜1141B中有效工作的有效磁场(Heff),如下面的等式所表示。

Heff=Hex-N(I/μ0)                       …(2)

只要上述有效磁场(Heff)不超出饱和磁场强度(Hc),坡莫合金膜1141B就不会磁饱和。

图77是例示坡莫合金膜1141B中的去磁因数的示意图。

去磁因数(N)是取决于诸如坡莫合金膜1141B的由磁性材料形成的部件的形状的因数。更具体地说,去磁因数在诸如坡莫合金膜1141B的膜部件的厚度方向上最大化,去磁因数在杆形部件的轴方向上最小化。

在图77所示的结构的情况下,因为引导磁体1145的静态磁场(Hex)沿着坡莫合金膜1141B的厚度方向入射,所以去磁因数(N)最大化。因此,坡莫合金膜1141B中的去磁场(Hd)最大化,有效磁场(Heff)最小化。因为坡莫合金膜1141B中的有效磁场(Heff)变小,所以在图75中的具有高可逆磁化率的区域中使用坡莫合金膜1141B。

使用上述结构,因为可以通过对磁感应线圈1142采用由磁性材料构成的坡莫合金膜1141B来改进磁感应线圈1142的性能,所以可以防止在要检测医用磁感应及位置检测系统1110的位置时出现问题。

更具体地说,当将驱动线圈1151的交变磁场施加到磁感应线圈1142时,与没有将坡莫合金膜1141B用于磁感应线圈1142的情况相比,由磁感应线圈1142形成的感应磁场的强度变高。因此,位置检测单元1150可以更容易地检测到上述感应磁场,由此,可以防止在要检测医用磁感应及位置检测系统1110的位置时出现问题。

此外,因为将坡莫合金膜1141B设置在因引导磁体1145的静态磁场而在其中引起的磁通量密度没有磁饱和的位置处,所以可以防止磁感应线圈1142的性能劣化。

更具体地说,当将驱动线圈1151的交变磁场和引导磁体1145的静态磁场施加到磁感应线圈1142时,与将坡莫合金膜1141B设置在使得其中的磁通量密度发生磁饱和的位置处的情况相比,磁感应线圈1142响应于交变磁场的强度变化响应而形成的感应磁场强度的变化范围变大。因此,位置检测单元1150可以更容易地检测到上述感应磁场强度的变化范围,由此,可以防止在要检测医用磁感应及位置检测系统1110的位置时出现问题。

因为在磁感应线圈1142的位置处引导磁体1145的磁场取向与坡莫合金膜1141B中的去磁因数最小化的方向之间的角度为大约90度,所以引导磁体1145的磁场从与去磁因数最小化的方向不同的方向入射在坡莫合金膜1141B上。

更具体地说,因为坡莫合金膜1141B的形状为大致圆柱状膜,所以引导磁体1145的磁场从去磁因数最大化的方向入射在坡莫合金膜1141B上。因此,可以使坡莫合金膜1141B中形成的去磁场最大化,并且可以使坡莫合金膜1141B中的有效磁场最小化。

因为磁感应线圈1142设置在由引导磁体1145的磁场在坡莫合金膜1141B中形成的磁通量密度等于或小于坡莫合金膜1141B的饱和通量密度的一半的位置处,所以可以抑制坡莫合金膜1141B中的可逆磁化率的下降。因此,即使在坡莫合金膜1141B的位置处除了引导磁体1145的磁场以外还形成有驱动线圈1151的交变磁场,也可以防止坡莫合金膜1141B中形成的磁通量密度超出饱和通量密度,并且可以防止磁感应线圈1142的性能的劣化。

因为沿着磁感应线圈1142的轴方向按一距离设置引导磁体1145和磁感应线圈1142,所以可以防止在要使用位置检测单元1150检测磁感应线圈1142的位置(即囊状内窥镜1120的位置)时出现问题。

更具体地说,当因驱动线圈1151形成的交变磁场而在磁感应线圈1142中感应出电动势时,防止了由于引导磁体1145屏蔽上述交变磁场而减弱在磁感应线圈1142中感应出的电动势。此外,防止了由于磁感应线圈1142感应出的磁场被引导磁体1145屏蔽而使得感测线圈1152对感应磁场的检测劣化或不能进行。因此,可以按改进的精度来检测囊状内窥镜1120的位置,并且防止了出现诸如不能检测到囊状内窥镜1120的问题。

因为将图像形成部1130设置在囊状内窥镜1120中,所以可以获取患者1体内的图像作为生物信息。此外,使用LED 1133,可以通过照亮患者1的体内而获得容易视觉识别的图像。

因为将图像形成部1130、电池1139等设置在磁感应线圈1142的中空结构中,所以与没有将图像形成部1130等设置在磁感应线圈1142中的情况相比,可以减小囊状内窥镜1120的尺寸。因此,可以更容易地将囊状内窥镜1120导入到患者1的体腔中。

可以通过在芯部件1141A与磁感应线圈1142之间设置作为磁性材料的坡莫合金膜1141B来增强出现在感应磁场产生部1140中的感应磁场的强度。

此外,通过将坡莫合金膜1141B形成为具有大致C形的剖面,防止了在坡莫合金膜1141B的剖面中出现按大致圆形流动的屏蔽电流。因此,可以防止因屏蔽电流而造成对磁场的屏蔽,并且可以防止对磁感应线圈1142中的磁场出现或接收的抑制。

因为将多个磁片1145a、1145b以及1145c形成为板形,所以可以容易地将它们彼此层叠以构建引导磁体1145。此外,因为使1145a、1145b以及1145c沿它们的板厚度方向磁化,所以可以更容易地将它们彼此层叠,由此,可以更容易地制造引导磁体1145。

此外,可以更容易地将绝缘体1145d插入磁片之间。此外,通过插入绝缘体1145d,可以使得屏蔽电流更难以在引导磁体1145中流动,由此,防止了磁感应线圈1142产生或接收的磁场被在引导磁体1145中流动的这种屏蔽电流所屏蔽。

通过使驱动线圈1151形成的交变磁场的频率与LC谐振电路1143的谐振频率(LC谐振频率)相同,与使用另一频率的情况相比,可以产生具有更大振幅的感应磁场。因此,感测线圈1152可以容易地检测到感应磁场,这使得容易检测囊状内窥镜1120的位置。

此外,因为交变磁场的频率在LC谐振频率附近的频率范围内变化,所以即使LC谐振电路1143的谐振频率因环境条件(例如,温度条件)的变化而改变,或者即使存在因LC谐振电路1143的个体差异而造成的谐振频率偏移,也可以在LC谐振电路1143中造成谐振。

将交变磁场从三个或更多个线性无关的不同方向施加到囊状内窥镜1120的磁感应线圈1142。因此,无论磁感应线圈1142的取向如何,都可以通过来自至少一个方向的交变磁场而在磁感应线圈1142中产生感应磁场。

结果,无论囊状内窥镜1120的取向(旋转轴R的轴方向)如何,始终可以在磁感应线圈1142中产生感应磁场;由此,提供了如下优点:始终可以通过感测线圈1152检测到感应磁场,这使得可以始终准确地检测其位置。

此外,因为将感测线圈1152设置在相对于囊状内窥镜1120的三个不同方向上,所以强度可检测的感应磁场作用于在三个方向上设置的感测线圈1152中的至少一个方向上设置的感测线圈1152上,这使得无论囊状内窥镜1120所在的位置如何,感测线圈1152都始终可以检测到感应磁场。

此外,如上所述,因为设置在一个方向上的感测线圈1152的数量为9个,所以确保了足够数量的输入以通过计算获取总计六条信息,其中,这六条信息包括囊状内窥镜1120的X、Y和Z坐标、关于彼此正交并且与囊状内窥镜1120的旋转轴R正交的两个轴的旋转相位φ和θ,以及感应磁场的强度。

通过将交变磁场的频率设置为LC谐振电路1143发生谐振的频率(谐振频率),与使用另一频率的情况相比,可以产生具有较大振幅的感应磁场。因为感应磁场的振幅较大,所以感测线圈1152可以容易地检测到感应磁场,这使得容易检测囊状内窥镜1120的位置。

此外,因为交变磁场的频率在谐振频率附近的频率范围内摆动,所以,即使LC谐振电路1143的谐振频率因环境条件(例如,温度条件)的变化而改变,或者即使存在因LC谐振电路1143的个体差异而造成的谐振频率偏移,只要变化的谐振频率或偏移的谐振频率包括在上述频率范围中,也可以在LC谐振电路1143中造成谐振。

因为位置检测单元1150通过感测线圈选择器1156来选择检测到高强度感应磁场的感测线圈1152的输出,所以可以减小位置检测单元1150必须计算的信息量,并且可以减小计算负荷。同时,因为可以同时减小计算处理量,所以可以缩短计算所需要的时间。

因为驱动线圈1151和感测线圈1152位于囊状内窥镜1120的工作区域的任一侧上的彼此相对的位置处,所以可以将驱动线圈1151和感测线圈1152设置为使得它们在其构造方面彼此不发生干扰。

通过控制作用于内置在囊状内窥镜1120中的引导磁体1145上的平行磁场的取向,可以控制作用于引导磁体1145上的力的取向,这使得可以控制囊状内窥镜1120的移动方向。因为同时可以检测到囊状内窥镜1120的位置,所以可以将囊状内窥镜1120引导到预定位置,由此,提供了如下优点:可以基于检测到的囊状内窥镜1120的位置来精确地引导囊状内窥镜1120。

通过控制由在相互正交方向上彼此面对地设置的三对赫尔姆霍茨线圈1171X、1171Y和1171Z产生的磁场的强度,可以将在赫尔姆霍茨线圈1171X、1171Y和1171Z内部产生的平行磁场的取向控制为预定方向。因此,可以将按预定取向的平行磁场施加到囊状内窥镜1120,并且可以使囊状内窥镜1120沿预定方向移动。

因为驱动线圈1151和感测线圈1152设置在赫尔姆霍茨线圈1171X、1171Y和1171Z的内侧空间(其是患者1可以位于其中的空间)的周围,所以可以将囊状内窥镜1120引导到患者1的体内的预定部位。

通过使囊状内窥镜1120围绕旋转轴R旋转,螺旋部1125产生沿旋转轴的轴方向推动囊状内窥镜1120的力。因为螺旋部1125产生推力,所以可以通过控制囊状内窥镜1120的围绕旋转轴R的旋转方向来控制作用于囊状内窥镜1120上的推力的方向。

因为图像显示装置1180基于关于囊状内窥镜1120的围绕旋转轴R的旋转相位的信息来执行用于使显示图像沿与囊状内窥镜1120的旋转方向相反的旋转方向旋转的处理,所以无论囊状内窥镜1120的旋转相位如何,都可以在显示部1182上显示始终固定在预定旋转相位的图像,换句话说,囊状内窥镜1120看起来没有围绕旋转轴R发生旋转地沿旋转轴R行进的图像。

因此,当操作员在视觉地观察显示在显示部1182上的图像的同时对囊状内窥镜1120进行引导时,与显示图像是随同囊状内窥镜1120的旋转而旋转的图像的情况相比,显示按上述方式显示为预定旋转相位图像的图像使得操作员可以更容易地观看,并且还使得更容易将囊状内窥镜1120引导到预定部位。

第七实施例

现在,参照图78和79对本发明的第七实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,囊状内窥镜的引导磁体的构造与第六实施例中的构造不同。因此,在该实施例中,仅参照图78到79对囊状内窥镜的引导磁体附近的情况进行说明,省略对磁感应装置等的说明。

图78是例示根据该实施例的囊状内窥镜的结构的图。

使用相同标号来表示与第六实施例中的部件相同的部件,由此不进行说明。

如图78所示,囊状内窥镜(医用装置)1320A主要由以下部件形成:外壳1121,其在内部容纳了多种装置;图像形成部1130,其形成患者体腔中的通道的内表面的图像;电池1139,其用于驱动图像形成部1130;感应磁场产生部1140,其通过上述驱动线圈1151产生感应磁场;以及引导磁体(磁体)1345,其驱动并引导囊状内窥镜1320A。

图79A是例示图78所示的囊状内窥镜1320A中的引导磁体1345的结构的正面图。图79B是引导磁体1345的侧面图。

如图79A和79B所示,引导磁体1345包括大致形成为板状的一个大尺寸磁片(磁片)1345a、两个中尺寸磁片(磁片)1345b、两个小尺寸磁片(磁片)1345c、以及插在磁片1345a、1345b和1345c之间的诸如乙烯基片的绝缘体(绝缘材料)1345d,并且被构建为具有大致圆柱形状。此外,使磁片1345a、1345b、1345c沿其表面方向(图中的上下方向)磁化。更具体地说,箭头所指的侧对应于北极,相对侧对应于南极。

将磁片1345a、1345b和1345c用诸如粘合剂或模架(former)的固定部件1346固定,以使得它们不会因它们的磁力而彼此分离。

因为具有上述结构的医用磁感应及位置检测系统和囊状内窥镜的操作与第六实施例中的操作相同,所以省略对它们的说明。

使用上述结构,因为使磁片1345a、1345b和1345c沿其表面方向磁化,所以与使它们沿厚度方向磁化的情况相比,可以增大磁片1345a、1345b和1345c的磁力。从而,可以增大作为磁片1345a、1345b和1345c的集合体的引导磁体1345的磁力。

第八实施例

现在,参照图80,对本发明的第八实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,囊状内窥镜的感应磁场产生部的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图80对囊状内窥镜的感应磁场产生部附近的情况进行说明,省略对磁感应装置等的说明。

图80是例示根据该实施例的囊状内窥镜的结构的图。

根据该实施例的囊状内窥镜(医用装置)1420B具有结构不同的感应磁场产生部(感应磁场产生单元)1440,并且其他装置具有不同布局。因此,仅对这两点进行说明,省略对其他装置的说明。

在囊状内窥镜1420B的外壳1121内部,从前端部1123起按顺序设置有透镜组1132、LED 1133、图像传感器1131、信号处理部1134、开关部1146、引导磁体1145、电池1139以及无线电装置1135。引导磁体1145设置为靠近囊状内窥镜1420B的重心。

感应磁场产生部1440按如下方式设置在外壳1121与电池1139等之间:覆盖从LED 1133的支承部件1138到电池1139的部件。

如图80所示,感应磁场产生部1440由以下部件形成:芯部件1441A,其形成为中心轴与旋转轴R大致一致的圆柱形状;磁感应线圈(内置线圈)1442,其设置在芯部件1441A的外周部上;坡莫合金膜(磁性物体)1441B,其设置在芯部件1441A与磁感应线圈1442之间;以及电容器(该图中未示出),其电连接到磁感应线圈1442并且构成LC谐振电路(电路)1443。

磁感应线圈1442稀疏地缠绕在引导磁体1145所在的区域,密集地缠绕在前端部1123侧和后端部1124侧。

因为具有上述结构的医用磁感应及位置检测系统和囊状内窥镜的操作与第六实施例的操作相同,所以省略对它们的说明。

使用上述结构,因为可以将引导磁体1145设置为靠近囊状内窥镜1420B的重心,所以与将引导磁体1145设置为略微朝向囊状内窥镜1420B的前端部1123侧或后端部1124侧的情况相比,可以容易地驱动并引导囊状内窥镜1420B。

第九实施例

现在,参照图81,对本发明的第九实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,囊状内窥镜的感应磁场产生部的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图81对囊状内窥镜的感应磁场产生部附近的情况进行说明,省略对磁感应装置等的说明。

图81是例示根据该实施例的囊状内窥镜的结构的图。

根据该实施例的囊状内窥镜(医用装置)1520C具有结构不同的感应磁场产生部(感应磁场产生单元)1540,并且其他装置具有不同布局。因此,仅对这两点进行说明,省略对其他装置的说明。

如图81所示,在囊状内窥镜1520C的外壳1121内部,从前端部1123起按顺序设置有透镜组1132、LED 1133、图像传感器1131、信号处理部1134、引导磁体1145、开关部1146、电池1139、无线电装置1135以及感应磁场产生部1540。

感应磁场产生部1540由以下部件形成:芯部件1541,其由铁氧体形成为中心轴与旋转轴R大致一致的圆柱形状;磁感应线圈(内置线圈)1542,其设置在芯部件1541的外周部上;以及电容器(该图中未示出),其电连接到磁感应线圈1542并且构成LC谐振电路(电路)1543。

作为对上述铁氧体的替代,芯部件1541可以由诸如铁、坡莫合金或镍的材料形成。

因为具有上述结构的医用磁感应及位置检测系统和囊状内窥镜的操作与第六实施例中的操作相同,所以省略对它们的说明。

使用上述结构,因为将由电介质铁氧体形成的芯部件1541设置在磁感应线圈1542的中央处,所以更容易使感应磁场集中在芯部件1541中,因此,产生的感应磁场甚至变得更强。

第十实施例

现在,参照图82和83,对本发明的第十实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第九实施例的基本构造相同;然而,囊状内窥镜的引导磁体的结构与第九实施例的结构不同。因此,在该实施例中,仅参照图82和83对囊状内窥镜的引导磁体附近的情况进行说明,省略对磁感应装置等的说明。

图82是例示根据该实施例的囊状内窥镜的结构的图。

根据该实施例的囊状内窥镜(医用装置)1620D具有结构不同的引导磁体(磁体)1645,并且其他装置具有不同布局。因此,仅对这两点进行说明,省略对其他装置的说明。

如图82所示,在囊状内窥镜1620D的外壳1121内部,从前端部1123起按顺序设置有透镜组1132、LED 1133、图像传感器1131、信号处理部1134、电池1139、开关部1146、无线电装置1135以及感应磁场产生部1540。

引导磁体1645按如下方式设置在外壳1121与电池1139等之间:覆盖从LED 1133的支承部件1138到电池1139的部件。

图83A是例示图82所示的囊状内窥镜1620D中的引导磁体1645的结构的正面图。图83B是引导磁体1645的侧面图。

如图83A和83B所示,引导磁体1645包括:设置在上部区和下部区的磁片1645a;设置在右侧和左侧的磁片1645b;设置在斜区的磁片1645c;以及设置在磁片1645a、1645b和1645c之间的绝缘体(绝缘材料)1645d,并且该引导磁体1645被构建成具有圆柱形状。

使磁片1645a沿板厚度方向磁化,使磁片1645b沿其表面方向磁化,使磁片1645c沿斜向磁化。在该图中,箭头所指的侧对应于北极,相对侧对应于南极。

因为具有上述结构的医用磁感应及位置检测系统和囊状内窥镜的操作与第九实施例中的操作相同,所以省略对它们的说明。

使用上述结构,因为将图像形成部1130、电池1139等设置在引导磁体1645的中空结构中,所以可以减小囊状内窥镜1620D的尺寸。

第十一实施例

现在,参照图84,对本发明的第十一实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第十实施例的基本构造相同;然而,囊状内窥镜的引导磁体的结构与第十实施例中的结构不同。因此,在该实施例中,仅参照图84对囊状内窥镜的引导磁体附近的情况进行说明,省略对磁感应装置等的说明。

图84是例示根据该实施例的囊状内窥镜的结构的图。

根据该实施例的囊状内窥镜(医用装置)1720E具有结构不同的引导磁体(磁体)1745,并且其他装置具有不同布局。因此,仅对这两点进行说明,省略对其他装置的说明。

如图84所示,在囊状内窥镜1720E的外壳1121内部,从前端部1123起按顺序设置有透镜组1132、LED 1133、图像传感器1131、信号处理部1134、开关部1146、电池1139、感应磁场产生部1540以及无线电装置1135。感应磁场产生部1540大致设置在囊状内窥镜1720E的中央处。

在外壳1121与电池1139等之间的两个位置处设置有引导磁体1745,更具体地说,将引导磁体1745设置为覆盖从LED 1133的支承部件1138到信号处理部1134和电池1139的部件。

因为具有上述结构的医用磁感应及位置检测系统和囊状内窥镜的操作与第九实施例中的操作相同,所以省略对它们的说明。

使用上述结构,因为可以将感应磁场产生部1540设置为靠近囊状内窥镜1720E的中央,所以与将感应磁场产生部1540设置为略微朝向囊状内窥镜1720E的前端部1123或后端部1124的情况相比,无需进行校正就可以检测到囊状内窥镜1720E的正确位置。

第十二实施例

现在,参照图85和86,对本发明的第十二实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,位置检测单元的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图85和86对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图85是示出位置检测单元中的驱动线圈和感测线圈的布置的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第六实施例中的情况相同,所以这里省略对它们的说明。

如图85所示,将位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)1850的驱动线圈(驱动部)1851和感测线圈1152设置为使得三个驱动线圈1851分别与X、Y和Z轴正交,并且感测线圈1152设置在分别与Y和Z轴正交的两个平面线圈支承部件1858上。

可以将如图所示的矩形线圈、赫尔姆霍茨线圈或相对线圈用作驱动线圈1851。

如图85所示,在具有上述结构的位置检测单元1850中,驱动线圈1851产生的交变磁场的取向平行于X、Y和Z轴方向并且线性无关,具有相互正交的关系。

使用该结构,可以从线性无关且相互正交的方向向囊状内窥镜1120中的磁感应线圈1142施加交变磁场。因此,无论磁感应线圈1142的取向如何,与第六实施例相比,都更容易在磁感应线圈1142中产生感应磁场。

此外,因为将驱动线圈1851设置为彼此大致正交,所以简化了由驱动线圈选择器1155对驱动线圈的选择。

如上所述,可以将感测线圈1152设置在垂直于Y和Z轴的线圈支承部件1858上,或者,如图86所示,可以将感测线圈1152设置在位于囊状内窥镜1120的工作区域的上部中的倾斜线圈支承部件1859上。

通过按这种方式来设置它们,可以将感测线圈1152设置为不与患者1发生干扰。

第十三实施例

现在,参照图87,对本发明的第十三实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,位置检测单元的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图87对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图87是示出位置检测单元中的驱动线圈和感测线圈的布置的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第六实施例中的情况相同,所以这里省略对它们的说明。

关于位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)1950的驱动线圈(驱动部)1951和感测线圈1152,如图87所示,四个驱动线圈1951设置在同一平面中,感测线圈1152设置在位于与驱动线圈1951所在位置相对的位置处的平面线圈支承部件1958、以及位于与驱动线圈1951所在侧相同一侧的平面线圈支承部件1958上,囊状内窥镜1120的工作区域位于这两个平面线圈支承部件之间。

将驱动线圈1951设置为使得任何三个驱动线圈1951产生的交变磁场的取向彼此线性无关,如该图中箭头所示。

根据这个构造,不管囊状内窥镜1120相对于驱动线圈1951位于近区还是远区,两个线圈支承部件1958中的一个都始终位于囊状内窥镜1120附近。因此,在确定囊状内窥镜1120的位置时,可以从感测线圈1152获得足够强度的信号。

第十三实施例的变型例

接下来,参照图88,对本发明第十三实施例的变型例进行说明。

这个变型的医用磁感应及位置检测系统的基本构造与第十三实施例的基本构造相同;然而,位置检测单元的结构与第十三实施例中的结构不同。因此,在该实施例中,仅使用图88对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图88是示出位置检测单元中的驱动线圈和感测线圈的定位的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第八实施例中的情况相同,所以这里省略对它们的说明。

如图88所示,关于位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)2050的驱动线圈1951和感测线圈1152,四个驱动线圈1951设置在同一平面中,感测线圈1152设置在位于与驱动线圈1951所在位置相对的位置处的曲面线圈支承部件2058、以及位于与驱动线圈1951所在侧相同一侧的曲面线圈支承部件2058上,囊状内窥镜1120的工作区域位于这两个曲面线圈支承部件之间。

线圈支承部件2058形成为朝着相对于囊状内窥镜1120的工作区域的外侧凸起的曲面形状,感测线圈1152设置在曲表面上。

如上所述,线圈支承部件2058的形状可以是朝着相对于工作区域的外侧凸起的曲表面,或者它们可以是任何其他形状的曲表面,并没有具体限制。

使用上述结构,因为提高了设置感测线圈1152的自由度,所以可以防止感测线圈1152与患者1发生干扰。

第十四实施例

接下来,参照图89,对本发明的第十四实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,位置检测单元的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图89对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图89是描绘根据该实施例的医用磁感应及位置检测系统的概况的图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第六施例中的情况相同,所以这里省略对它们的说明。

如图89所示,医用磁感应及位置检测系统2110主要由以下部件形成:囊状内窥镜(医用装置)2120,其对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)2150,其检测囊状内窥镜2120的位置;磁感应装置1170,其基于检测到的囊状内窥镜2120的位置和来自操作员的指令而引导囊状内窥镜2120;以及图像显示装置1180,其显示从囊状内窥镜2120发送来的图像信号。

如图89所示,位置检测单元2150包括感测线圈1152,该感测线圈1152用于检测在囊状内窥镜2120的磁感应线圈(内部磁场检测器)中产生的感应磁场。

在感测线圈1152与位置检测装置2150A之间设置有:感测线圈选择器1156,其基于来自位置检测装置2150A的输出,从感测线圈1152中选择包括囊状内窥镜2120的位置信息等的AC电流;和感测线圈接收电路1157,其从通过感测线圈选择器1156的AC电流提取幅值,并将该幅值输出到位置检测装置2150A。

将一振荡电路连接到囊状内窥镜2120的磁感应线圈。通过将振荡电路连接到磁感应线圈,无需使用驱动线圈等即可由磁感应线圈产生磁场,并且可以使用感测线圈1152来检测产生的磁场。

第十五实施例

现在,参照图90,对本发明的第十五实施例进行说明。

根据这个实施例的医用磁感应及位置检测系统的基本构造与第六实施例的基本构造相同;然而,位置检测单元的结构与第六实施例中的结构不同。因此,在该实施例中,仅参照图90对位置检测单元附近的情况进行说明,省略对磁感应装置等的说明。

图90是示出位置检测单元的驱动线圈和感测线圈的布局的示意图。

因为位置检测单元的除了驱动线圈和感测线圈以外的其他部件与第六施例中的情况相同,所以这里省略对它们的说明。

如图90所示,医用磁感应及位置检测系统2210主要由以下部件形成:囊状内窥镜(医用装置)2220,其对体腔中的通道的内表面进行光学成像,并且无线地发送图像信号;位置检测单元(位置检测系统、位置检测装置、位置检测器、计算装置)2250,其检测囊状内窥镜2220的位置;磁感应装置1170,其基于检测到的囊状内窥镜2220的位置和来自操作员的指令而引导囊状内窥镜2220;以及图像显示装置1180,其显示从囊状内窥镜2220发送来的图像信号。

如图90所示,位置检测单元2250主要由以下部件构成:驱动线圈(驱动部)2251,其用于在囊状内窥镜2220内的后面要说明的磁感应线圈中产生感应磁场;和驱动线圈选择器1155,其用于基于后面要说明的感应电动势信息来计算囊状内窥镜2220的位置,并且用于控制由驱动线圈2251产生的交变磁场。

此外,驱动线圈2251形成为空气芯线圈,并且由如图所示的三个平面线圈支承部件1158支承在赫尔姆霍茨线圈1171X、1171Y和1171Z的内侧。在每一个线圈支承部件1158中按矩阵形式排列有9个驱动线圈2251,由此在位置检测单元2250中设置有总计27个驱动线圈2251。

如图90所示,图像形成装置1180由以下部件形成:图像接收电路2281,其接收从囊状内窥镜2220发送来的图像和后面要说明的感应电动势信息;和显示部1182,其基于接收的图像信号和来自旋转磁场控制电路1173的信号而显示图像。

将用于检测感应电动势的电动势检测电路连接到囊状内窥镜2220的磁感应线圈。

现在,对上述医用磁感应及位置检测系统2210的操作进行说明。

驱动线圈选择器1155通过基于来自位置检测单元2250的信号而在驱动线圈2251中按时间顺序进行切换,从而产生交变磁场。产生的交变磁场作用于囊状内窥镜2220的磁感应线圈上,从而产生感应电动势。

连接到磁感应线圈的电动势检测电路基于上述感应电动势来检测感应电动势信息。

当向图像接收电路2281无线地发送获得的图像数据时,囊状内窥镜2220将检测到的感应电动势信息叠加在图像数据上。接收到了图像数据和感应电动势信息的图像接收电路2281将图像数据发送给显示部1180,并将感应电动势信息发送给位置检测部2250A。位置检测部2250A基于感应电动势信息来计算囊状内窥镜的位置和取向。

使用上述结构,无需在位置检测单元2250中设置感测线圈即可检测囊状内窥镜的位置和方向。此外,通过将感应电动势信息叠加在要发送的图像数据上,位置检测单元2250可以在无需在囊状内窥镜中设置新发送器的情况下工作。

本发明的技术领域不限于前述第六到第十五实施例,可以在不脱离本发明的要旨的情况下在其范围内应用各种变型例。

例如,在对前述第六到第十五实施例的说明中,采用设置有图像形成部1130的囊状内窥镜(医用装置)作为生物信息获取单元。作为对图像形成部1130的替代,可以采用多种装置作为生物信息获取单元,包括:设置有用于检查出血位置的血液传感器的囊状医用装置;设置有用于执行基因诊断的基因传感器的囊状医用装置;设置有用于释放药品的药品释放单元的囊状医用装置;设置有用于在体腔中设标记的标记单元的囊状医用装置;以及设置有用于在体腔中收集体液和组织的体液及组织收集单元的囊状医用装置。

此外,尽管已经通过独立于外部的囊状内窥镜的示例对第六到第十五实施例进行了说明,但是也可以适用于具有线缆以通过线缆连接到外部的囊状内窥镜。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号