首页> 中国专利> 热轧钢带的冷却装置、热轧钢带的制造方法以及热轧钢带的生产线

热轧钢带的冷却装置、热轧钢带的制造方法以及热轧钢带的生产线

摘要

本发明是一种热轧钢带的冷却装置,具有设置于热轧后通过输送辊输送的热轧钢带的上表面侧的,用于冷却热轧钢带的上表面的上表面冷却装置、和设置于热轧钢带的下表面侧,用于冷却热轧钢带的下表面的下表面冷却装置;并且这些冷却装置各自具有在接近热轧钢带表面的位置上贯通有至少1个的冷却水通过孔的防护部件、在相对防护部件与热轧钢带相反的一侧配置的至少1个冷却水箱、和突出于冷却水箱而设置的,通过冷却水通过孔,与热轧钢带表面大致垂直地喷射冷却水的冷却水喷嘴;并且冷却水喷嘴,此喷嘴顶端设置于比防护部件的对着热轧钢带的面还远离热轧钢带的位置。根据本发明,可稳定地输送热轧后的热轧钢带,并可均匀地对其进行急速冷却。

著录项

  • 公开/公告号CN1630564A

    专利类型发明专利

  • 公开/公告日2005-06-22

    原文格式PDF

  • 申请/专利权人 杰富意钢铁株式会社;

    申请/专利号CN02828936.6

  • 申请日2002-08-08

  • 分类号B21B45/02;

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人樊卫民;郭国清

  • 地址 日本东京

  • 入库时间 2023-12-17 16:12:33

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-26

    专利权有效期届满 IPC(主分类):B21B45/02 专利号:ZL028289366 申请日:20020808 授权公告日:20070314

    专利权的终止

  • 2007-03-14

    授权

    授权

  • 2005-08-17

    实质审查的生效

    实质审查的生效

  • 2005-06-22

    公开

    公开

说明书

技术领域

本发明涉及热轧后的热轧钢带的冷却装置、使用此装置的热轧钢带的制造方法以及热轧钢带的生产线。

背景技术

一般的,热轧钢带,是在加热炉中将钢坯加热至规定的温度,将被加热的钢坯通过粗热轧机轧成规定厚度的粗型材,将粗型材通过由多个轧台构成的精轧机轧成规定的厚度的钢带,将轧后的钢带在输出辊道通过冷却装置边冷却边输送,再被卷绕机卷绕而制成的。在这里,输出辊道是指在精轧机的下游侧设置的热轧钢带的输送装置,钢带通过以适当的间隔配置的多根输送辊被输送。

现有的输出辊道上的冷却装置,首先考虑钢带的稳定输送,一般地构成如图1A、1B所示。在这里,图1A是外观图,图1B是图1A的侧面图。钢带9的上表面冷却,如图1A所示,进行如下:从在输送辊的7的正上方沿着钢带9的宽度方向在直线上设置的圆管流线冷却喷嘴31处,注入圆管流线冷却水32,通过水压将钢带9从输送线推入。另一方面,钢带9的下表面冷却,如图1B所示进行:通过在输送辊7之间设置的喷雾嘴33间歇地向钢带9喷射冷却水34。

近年,对于热轧钢带,变得追求加工性能优越,含碳量低但强度高。因此,需要有效地使钢带组织细粒化,热轧后将钢带更加急速地冷却。特别是在如特低碳钢那样的含碳量低的钢中,由于轧后的奥氏体晶粒因为再结晶而容易粗大化,需要将钢带以超过200℃/s的冷却速度进行冷却。

为了进行这样急速地冷却,在特开昭62-259610号公报中,公开了以下的技术:在输送辊之间设置兼做导向的具有多个孔的冷却水喷射板,将这些孔作为喷嘴,可以变换角度向钢带上喷射冷却水的下表面冷却装置,提高了钢带下表面的冷却能力。

然而,在特开昭62-259610号公报中记载的技术中,存在以下的种种的问题。

1)热轧钢带,由于其前端从精轧机出来直至卷绕机,处于没有张力的状态,在输出辊道上,边上下振动,边被输送,以此技术冷却这样的没有张力的钢带,由于助长了此上下振动,因而不能充分地增加冷却水量,例如不可能将板厚3mm的钢带以200℃/s以上的冷却速度进行冷却。

2)在此技术中,不能以相同的速度来冷却钢带的上下表面。

3)此技术是以1000L/min·m2左右的水量密度的冷却为前提的技术,例如为了对板厚3mm的钢带以超过200℃/s的冷却速度进行冷却,还需要更大的水量密度。然而,若用此技术的冷却装置增大水量密度,在钢带的宽度方向中心附近,如图2A示意地所示,由于喷射后的冷却水滞留在冷却水喷射板的和钢带之间的狭小的间隙中,喷射的冷却水的流速降低,得不到规定的冷却能力。另一方面,在钢带的宽度方向端部附近,由于冷却水流能够从端部流下,因而不滞留,能得到规定的冷却能力。其结果,如图2B所示,钢带的宽度方向的温度分布,成在两端部能得到目标温度,在中央部比目标温度高的倒V字形的分布,在宽度方向上不能进行均匀的冷却。

因此,如果加大冷却水喷射板与钢带的距离,如图3A所示,可以抑制在钢带的宽度方向中心附近的冷却水的滞留,可以得到预定的冷却能力。然而,由于冷却后的冷却水从钢带的宽度方向中心附近向宽度方向端部大量地排出,在宽度方向端部附近冷却水流紊乱,冷却能力降低。其结果,如图3B所示,钢带的宽度方向的温度分布成在两端部比目标温度高,在中央部可以得到目标温度的正V字形分布,不能在宽度方向进行均匀的冷却。

而且,即使使兼做导向的冷却水喷射板与钢带的距离变得适当,冷却后的钢带的宽度方向的温度分布,也是成综合图2B的倒V字形和图3B的正V字形的M字形的分布,不能在宽度方向进行均匀的冷却。

4)如此技术所述,将设置于冷却水喷射板的多个孔作为喷嘴,向钢带变换角度喷射冷却水,冷却水到达钢带下表面的距离因喷嘴而不同。因此,对着钢带斜着喷射的冷却水到达钢带的距离变大,流速的衰减大,不能有效地冷却钢带。此外,如3)所述,由于易受喷射后的冷却水的影响,更加难于在钢带的宽度方向进行均匀的冷却。

发明内容

本发明的目的在于,提供一种可以稳定地输送热轧后的热轧钢带并可均匀地对其进行急速冷却的热轧钢带的冷却装置、使用此装置的热轧钢带的制造方法以及热轧钢带的生产线。

上述目的由热轧钢带的冷却装置达成,热轧钢带的冷却装置,具有设置于热轧后通过输送辊输送的热轧钢带的上表面侧的,用于冷却热轧钢带的上表面的上表面冷却装置、和设置于热轧钢带的下表面侧,用于冷却热轧钢带的下表面的下表面冷却装置;并且上表面冷却装置和下表面冷却装置各自具有在接近热轧钢带的钢带表面的位置贯通有至少1个的冷却水通过孔的防护部件、在相对防护部件,与热轧钢带相反的一侧配置的至少1个的冷却水箱、和突出于冷却水箱而设置的,通过冷却水通过孔,与热轧钢带的钢带表面大致垂直地喷射冷却水的冷却水喷嘴,并且冷却水喷嘴,设置于此喷嘴顶端比防护部件的对着热轧钢带的面还远离热轧钢带的位置。

并且,如果将这样的热轧钢带的冷却装置设置于热轧钢带的生产线的输出辊道,可稳定地输送热轧钢带的同时,可提供被均匀地急速冷却的钢带。

附图说明

图1A、1B为表示现有的输出辊道上的热轧钢带的冷却装置的一例的图。

图2A、2B分别为示意地表示使用特开昭62-259610号公报中记载的冷却装置进行冷却时的冷却水的动态以及钢带的宽度方向的温度分布的图。

图3A、3B分别为示意地表示加大图2A、2B中冷却装置的冷却水喷射板与钢带的距离时的冷却水的动态以及与钢带的宽度方向的目标温度的温度差的图。

图4为表示设置有本发明的热轧钢带的冷却装置的热轧钢带的生产线的一例的图。

图5A、5B为表示本发明的热轧钢带的冷却装置的一例的图。

图6A、6B分别为示意地表示柱状的流线流、非流线流的图。

图7A、7B、7C、7D为表示各种防护部件的图。

图8A、8B为表示设置有如图7A所示的狭缝状的冷却水通过孔的平板的防护部件的冷却装置的一例的图。

图9为表示下表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系的一例的图。

图10为表示下表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系另一例的图。

图11A、11B为示意地表示输送中的钢带前端的动态的图。

图12为表示上表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系的一例的图。

图13为表示本发明的热轧钢带的冷却装置的另一例的图。

图14为表示配置有图13的冷却装置的热轧钢带的生产线的图。

图15为表示作为比较例的热轧钢带的冷却装置的图。

图16为表示钢带宽度方向的温度分布的图。

具体实施方式

在图4表示配置有本发明的热轧钢带的冷却装置的热轧钢带的生产线的一例。

此热轧钢带的生产线,由将钢坯轧成粗型材2的粗轧机1、将粗型材2轧成规定板厚的热轧钢带的,由多个轧台构成的精轧机3、通过输送辊7输送精轧后的热轧钢带9的输出辊道5,和卷绕输送的热轧钢带9的卷绕机6构成。并且,在输出辊道5上,紧靠着精轧机3之后设置了用于急速冷却热轧钢带9的本发明的热轧钢带的冷却装置4。并且在其下游侧也可以设置图1A所示的现有的冷却装置8。

在图5A中表示本发明的热轧钢带的冷却装置的一例。另外,在图5B中表示将图5A的冷却装置的一部分扩大的图。

本发明的热轧钢带的冷却装置,由在热轧钢带9的下表面侧设置的冷却热轧钢带9的下表面的下表面冷却装置4a,和在热轧钢带9的上表面侧设置的冷却热轧钢带9的上表面的上表面冷却装置4b构成。

各冷却装置4a、4b,分别具有在接近于热轧钢带9的钢带表面的位置上,大致与钢带表面平行地配置的平板状的防护部件10(下表面防护部件10a、上表面防护部件10b),相对各防护部件10a、10b,分别在与热轧钢带9相反的一侧配置的冷却水箱12(下表面冷却水箱12a、上表面冷却水箱12b)。并且,在各冷却水箱12a、12b上,在输出辊道的宽度方向以及长度方向上空隔适当的间隔而突出设置冷却水喷嘴15。冷却水喷嘴15,此喷嘴顶端被设置于比防护部件10的对着热轧钢带9的面还远离热轧钢带9的位置。并且,在各防护部件10贯通有冷水通过用的多个冷水通过孔11,各冷却水喷嘴15,被配置成通过此冷却水通过孔11与钢带表面大致垂直地喷射冷却水。

并且,在热轧钢带9的上表面侧,大致对着设置于下表面侧的输送辊7设置2个导辊14,通过此导辊14更稳定地输送热轧钢带9。并且,此导辊14,优选设置于热轧钢带9的上表面侧的大致对着输送辊7的位置的至少一个地方,也可以设置于大致对着输送辊7的所有的位置。

而且,上表面冷却装置4b的上表面防护部件10b,除了导辊14的设置位置,都接近钢带表面而设置。

另一方面,下表面冷却装置4a的下表面防护部件10a,设置于在输出辊道的长度方向上以适当的间隔设置的多根的输送辊7之间。因而,设置于下表面冷却水箱12a的冷却水喷嘴15也设置在各输送辊7之间。另外,在图5A中,下表面冷却水箱12a也设置在各输送辊7之间,但也可以设置成通过各输送辊7的下方,跨在多根的输送辊7之间。在各输送辊7之间至少设置一个,优选在输出辊道的长度方向、宽度方向分割设置多个下表面冷却水箱12a。分割设置冷却水箱12,可以细微地控制控制热轧钢带9的冷却。在长度方向分割时,例如,通过细微地变更最初使用的冷却水箱12的位置,使其对应于随钢带的输送速度而变化的钢带的冷却开始点,可以使钢带9的冷却开始温度为一定。并且,在宽度方向分割时,可以对应种种的钢带宽度,选择冷却水箱12,可达到高效的冷却。

对于上表面冷却水箱12b,也能得到同样的效果。而且,上表面冷却水箱12b,优选隔着热轧钢带9与下表面冷却水箱12a相对设置。通过相对而设置,容易得到上下的冷却的平衡,容易调整开始上下表面的冷却的水箱位置,具有因上下受到的水压而可以将热轧钢带9稳定地输送的优点。

突出于上下各冷却水箱12而设置的上表面冷却装置4b的各冷却水喷嘴15和下表面冷却装置4a的各冷却水喷嘴15,优选设置成隔着热轧钢带9而大致相对。这是因为容易得到上下的冷却及水压的平衡。

并且,如前所述,各冷却水喷嘴15,被配置成从各冷却水箱12突出,与钢面大致垂直地喷射冷却水。也就是冷却水箱12的喷嘴设置面如图5B所示平行于钢带时,冷却水喷嘴15从冷却水箱15垂直地突出而设置。设置成这样的构造,如特开昭62-259610号公报中所记述的冷却装置那样,从喷嘴中喷射的冷却水受喷出后的冷却水的影响变少。而且由于从各喷嘴喷射的冲撞到钢带上的冷却水的流速大致相同,可达到冷却的均匀化。

冷却水喷嘴15一般使用流线(laminar)喷嘴。由于流线喷嘴的冷却水喷射口是圆管状,喷射的水流不分散,成柱状的流线流冲撞到钢带上。在这里,柱状的流线流主要是层流,也可以有一点凸起状的乱流状态。

在图6A、6B中分别示意地表示柱状的流线流、非流线流。

在柱状的流线流的情况下,由于水流不分散而到达钢带冷却效率好,可以进行超过200℃/s的急速冷却。另一方面,在非流线流的情况下,即使使喷嘴接近钢带,由于从喷嘴喷射的冷却水的流速因在钢带和喷嘴之间滞留的冷却水而衰减,冷却效率低。

在现有的冷却装置中,对于钢带上表面的冷却使用流线冷却喷嘴,但是由于使冷却水下落钢带全面积上,以冷却水覆盖钢带表面,主要通过膜沸腾进行冷却,因而冷却速度至高为100℃/s左右。另一方面,在本发明的冷却装置中,在冷却水喷嘴使用流线喷嘴这一点上,和现有的冷却装置相同,但在本发明的冷却装置中,由于可以以2500L/min·m2以上的水量密度喷射大量的冷却水,因而在以冷却水覆盖钢带整体的同时,从喷嘴喷射的冷却水可以直接接触到钢带,因而可以将板厚3mm左右的钢带以超过200℃/s的冷却速度冷却。并且,冷却速度取决于钢板的厚度,板厚越薄就越快,在水量密度等的冷却条件一定的情况下,具有(板厚)×(冷却速度)基本一定的关系。因此,即使在板厚厚的情况下,例如通过增加水量密度,可以得到期望的冷却速度。

另外,本发明的冷却水喷嘴的喷射口径优选1-10mm。喷射口径如小于1mm,难以得到柱状的流线流。另一方面,由于在基于本发明的冷却装置的冷却中需要冲撞压力,喷嘴出口的流速已经确定,如果加大喷射口径需相应地增加水量。然而,由于即使增加水量,冷却能量也在某个程度达到饱和,因而将喷射口径设置在10mm以下是经济的。

上述的在冷却水箱和钢带之间设置的防护部件,具有使钢带稳定地输送的作用,保护冷却水箱、冷却水喷嘴避免与钢带的冲撞的作用。并且,贯通于防护部件的冷却水通过孔,具有作为冷却水喷出孔的作用和作为喷出后的冷却水的排水孔的作用。

设置有冷却水通过孔的防护部件,可使用如图7A所示的设置有狭缝状的孔的平板、如图7B所示的将多根的棒并列配置的结构,如图7C所示的格子状的结构,如图7D所示的膨胀合金。然而,图7B、7C、7D所示的防护部件,与钢带接触的部分窄,接触面压强大,容易烧结在钢板上,在钢板上留下压入痕迹。因此,优选设置有如图7A的狭缝状的孔的平板,其具有使冷却水通过需要的最小限度的冷却水通过孔。而且,由于使用这样的防护部件,可以防止在钢带上留下瑕疵。

使用如图7A所示的平板的防护部件时,考虑钢带的强度、刚性等,其板厚优选5mm以上。板厚不足5mm时,由于与被输送的钢带的冲撞,会产生破损、变形。

在图8A、8B表示配置如图7A所示的贯通有狭缝状的冷却水通过孔的防护部件的冷却装置的一例。图8A是下表面冷却装置的平面图,图8B是也包括上表面冷却装置的图8A的A-A剖视图。

在处于防护部件10中的各狭缝状的冷却水通过孔11中,设置多个冷却水喷嘴15,从那里喷射流线流13的冷却水。此狭缝状的冷却水通过孔11的开口部,为了排出喷射后的冷却水而优选尽量的大,但如果过大,容易和钢带9的前端冲撞,并与孔缘接触而产生出现烙印、瑕疵等问题。因此,一个的狭缝状的冷却水通过孔11的开口部,如图8A所示,优选设置为直线状地收纳2-10个左右的冷却水喷嘴15程度的大小。并且,各狭缝状的冷却水通过孔11中,也可以设置多列直线状地排列的多个的喷嘴。

并且,如图8A所示,不需要所有的冷却水通过孔11都为狭缝状,狭缝状的冷却水通过孔11占多数就可以。即使在一部分上有非狭缝状的冷却水通过孔11,在使冷却水通过上没有问题。特别的,在宽度方向中央部和两端部上,由于配置上的原因难以使冷却水通过孔11为狭缝状。

狭缝状的冷却水通过孔11,为了容易将排水向冷却装置的外部排出,优选设置成其长度方向相对钢带9的输送方向向水平方向倾斜。如果其长度方向与钢带9的输送方向相交成直角,存在扰乱排水的水流,钢带9的前端与孔冲撞而损伤钢带9、冷却水通过孔11的情况。如果其长度方向与钢带的输送方向平行,则排水水流不流畅。此外,如图8A所示,狭缝状的冷却水通过孔11被相对输出辊道的中心线大致成线对称地配置,并且冷却水通过孔11的长度方向相对钢带9的输送方向,以在水平方向上扩展的方式倾斜,这在使排水更为流畅地向冷却装置的外部排出上,是更被优选的。

在图9,表示下表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系的一例。

在此例中,防护部件10a的厚度薄,冷却水喷嘴15的顶端16配置于防护部件10a的下表面的下方。

在图10中,表示下表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系的另一例。

在此例中,防护部件10a的厚度厚,冷却水喷嘴15的顶端16配置于防护部件10a的冷却水通过孔11的内部。

在图9所示的下表面冷却装置中,冷却水喷嘴顶端16与钢带9的钢带表面的距离Xa、防护部件10a的上表面与钢带表面的距离Ya、防护部件10a的下表面与冷却水箱12a的距离Za,如下被决定。

首先,决定与钢带冲撞的冷却水的流线流13的冲撞速度以及冷却水喷嘴15的间距,以得到需要的冷却速度。

接着,考虑冷却水喷嘴15的喷射口径,决定确保此冲撞速度而需要的冷却水喷嘴顶端16与钢带表面之间的距离Xa。此时,优选使冷却水喷嘴顶端16与钢带表面的距离Xa在100mm以下。这是因为:将钢带9冷却后的冷却水从钢带9和防护部件10a之间流出时,妨碍从冷却水喷嘴15中喷射的冷却水的流线流13向钢带冲撞,特别是如果距离Xa超过100mm,冷却水的流线流13的流速的衰减变得显著,因而更加容易妨碍冷却水的向钢带的冲撞,难以进行强冷却。此外,如上述,冷却水喷嘴顶端16设置于比防护部件10a的对着钢带9的面还远离钢带9的位置。即,决定冷却水喷嘴顶端16与钢带表面的距离Xa,使其取比在后说明的防护部件10a的上表面与钢带表面的距离Ya还大的值。

从使钢带9在防护部件10a的上表面稳定地输送的观点出发,决定防护部件10a的上表面与钢带表面的距离Ya。防护部件10a的位置低时,如图11A所示,存在这样的担忧:输送的钢带9的前端向下折曲,与输送辊7冲撞,向上方跳起,在钢带9的前进的同时,助长了钢带9的前端的上下振动,有损于稳定的输送。最坏的情况是,如图11B所示,钢带9折曲好几层,陷入不能前进的状态。这样的现象,在Ya超过50mm的情况下容易发生。另一方面,如果Ya不足10mm,钢带经常与防护部件10a接触,不仅擦过钢带而产生瑕疵,还容易产生上述的折曲。因此,Ya优选为10-50mm。

防护部件10a的下表面与冷却水箱12a的距离Za,由于构成使从冷却喷嘴15喷射的冷却水快速地排出而需要的空间,因而优选较大距离,但是如果过大,就必须使从冷却水箱12a突出的冷却水喷嘴15过长。另一方面,用于冷却水喷嘴15的圆管流线喷嘴的直管部对冷却水喷射口径的长度之比优选为5-20,如果大于20,流动阻力增加,就不得不增加冷却水的供给压力,不经济。此外,如果不足5,喷射的冷却水变成如图6B所示的非流线流,不能得到足够的冷却能力。因此,距离Za,考虑通过防护部件10a的冷却水通过孔11排出的冷却水量,如下被决定。从冷却水喷嘴15喷射出而冷却钢带9的冷却水,在与防护部件10a之间的间隙(距离Ya)流动,通过①防护部件10a和钢带之间的间隙的宽度方向两端部、②防护部件10a和输送辊7的之间的间隙、③设置在防护部件10a上的冷却水通过孔11,这三个路径排出。其中,由于通常防护部件10a和输送辊7之间的间隙被设定为例如1mm以下,以使钢带9的前端不抵到此间隙,因而通过路径②排出的冷却水量少。另一方面,如果从路径①流出的冷却水量多,从宽度方向中央部附近向宽度方向两端部的水流就变强,出现图3B所示的正V字形的宽度方向温度分布。因此,为了抑制以使从此宽度方向中央部向两端部的水流尽量少,有必要在防护部件10a上设置冷却水通过孔11,使冷却水从③的路径排出。因此,决定冷却水通过孔11的面积,由其面积求出经冷却水通过孔11排出的冷却水量、即从冷却水箱12a下落的冷却水量,而决定防护部件10a的下表面与冷却水箱12a的距离Za。并且,从冷却水箱12a下落的冷却水,从冷却水箱12a和输送辊7之间的间隙排出。此时,如果冷却水的排出滞慢,也会妨碍从冷却水喷嘴15喷射的冷却水的流线流13,对于钢带的冷却出现宽度方向的不均匀,因而取适当的间隔而使冷却水排出是很重要的。

在图12,表示上表面冷却装置的防护部件、冷却水箱和冷却水喷嘴的位置关系的一例。

冷却水喷嘴顶端16与钢带9的钢带表面的距离Xb、防护部件10b的下表面与钢带的距离Yb、防护部件10b的上表面与冷却水箱12b的距离Zb,如下被决定。

上表面冷却装置的冷却水喷嘴顶端16与钢带表面的距离Xb,相当于上述的下表面冷却装置的距离Xa。只是在上表面冷却装置,由于冷却水滞留于钢带上,因而还考虑导辊14的数目及设置位置、防护部件10b的下表面和钢带表面的距离Yb、防护部件10b的厚度而决定。此时,冷却水喷嘴顶端16与钢带表面的距离Xb和下表面冷却装置的距离Xa同样,优选在100mm以下。

防护部件10b的下表面与钢带表面的距离Yb,相当于上述的下表面冷却装置的距离Ya,与下表面冷却装置得情况相同,优选10-50mm。

防护部件10b的上表面与冷却水箱12b的距离Zb,相当于下表面冷却装置的距离Za,但还考虑导辊15的数目和设置位置、导辊14和钢带9之间的间隙而决定。并且,防护部件10b的冷却水通过孔11的面积也同样地,考虑导辊14的数目和设置位置、导辊14与钢带9之间的间隙而决定。

此外,上表面冷却装置的冷却水喷嘴15,如图12所示,优选设置成其顶端16位于防护部件10b的冷却水通过孔11的内部,其理由如下。

在下表面冷却装置,向钢带喷射的冷却水,由于重力通过防护部件10a的冷却水通过孔11下落,在上表面冷却装置,喷射的冷却水的大半从宽度方向两端部排出。因此,从钢带9和防护部件10b之间的间隙排出的冷却水,从防护部件10b的下表面侧通过冷却水通过孔11流入防护部件10b和冷却水箱12b之间的空间。因此,对于形成使冷却水喷嘴15喷射的冷却水流不受在防护部件10b的上方的空间,向宽度方向两端部流的排水流的影响的结构,优选设置成冷却水喷嘴15的顶端16位于冷却水通过孔11的内部。

而且,在下表面冷却装置,由于排水量变化,也存在受到在冷却水箱12a和防护部件10a之间,向宽度方向两端部流动的排水流的影响的情况,冷却水喷嘴15优选设置成其顶端16位于防护部件10a的冷却水通过孔11的内部。

设置于热轧钢带的上表面侧的导辊14,如果不存在钢带9的前端卡住,在钢带9的中间出现波腹这样的输送上的问题,优选在输送的热轧钢带9的上表面,在与钢带表面之间设置大约5mm左右的间隙,而设置。在存在上述这样的输送上的问题的情况下,进一步扩大导辊14和钢带9之间的间隙以使波腹不出现,使钢带前端以及后端向冷却装置的外部送出。由于扩大导辊14和钢带9的间隙而导致除水性变差时,在冷却装置的入侧、出侧及中间位置的至少一个地方设置夹紧辊,强制地夹紧钢带9,向冷却装置中送入或者送出。

根据如以上构成的本发明的热轧钢带的冷却装置,可以边通过防护部件、导辊等稳定地输送钢带,边从上下表面大致均匀地喷射冷却水,可以对热轧钢带进行强冷却。另外,由于可以适当地排出喷射在钢带表面上的冷却水,将其水流的影响抑制至最小限度,而冷却热轧钢带,在宽度方向也能达到均匀的强冷却。

如图4所示,如果将本发明的热轧钢带的冷却装置配置在热轧钢带生产线的输出辊道,可以通过冷却速度超过200℃/s的急速冷却将钢带稳定地均匀地冷却,可以制造出材质改变少、形状不良少的加工性优良的热轧钢带。

实施例

使用设置有如图13所示的本发明的热轧钢带的冷却装置的如图14所示的热轧钢带的生产线,将板厚30mm、板宽1000m的碳钢的粗型材通过由7机的轧台构成的精轧机在输送速度700mpm、精轧温度850℃的条件下轧成板厚3mm的钢带后,将此钢带以约700℃/s的冷却速度冷却至550℃,其后使用现有的冷却装置8进行冷却以使卷绕温度为500℃。并且,冷却速度约为700℃/s时的水量密度为7500L/min·m2

如图13所示,下表面冷却装置4a,具有在长度方向以500mm间距设置的直径为300mm的多根的输送辊7、在此输送辊7之间,在接近输送的热轧钢带9的位置上,与热轧钢带9的面平行地配置的板厚25mm的平板的下表面防护部件10a、贯通于下表面防护部件10a的冷却水通过用的多个冷却水通过孔11、将喷嘴顶端配置于防护部件上表面的下方的口径5mm冷却水喷嘴15,和突出设置有冷却水喷嘴15的下表面冷却水箱12a。

在各输送辊之间各设置1个下表面冷却水箱12a。此外,在此下表面冷却水箱12a上,在宽度方向及长度方向等间距地配置喷射冷却水的冷却水喷嘴15。冷却水喷嘴15使用流线喷嘴。

使钢带表面与冷却水喷嘴顶端16的距离Xa为25mm,钢带表面与下表面防护部件10a的距离Ya为10mm,下表面防护部件10a与冷却水箱12a的距离Za为30mm。

上表面冷却装置4b,具有在对着输送辊7的位置上,距钢带9空出5mm间隙而设置的3个导辊14、在接近被传送的热轧钢带9的上表面的位置上,与热轧钢带9平行地配置的板厚25mm的平板的上表面防护部件10b、贯通于此上表面防护部件10b的冷却水通过用的多个的冷却水通过孔11、将喷嘴顶端配置于防护部件下表面的上方的口径5mm的冷却水喷嘴15,和突出设置有冷却水喷嘴15的上表面冷却水箱12b。

上表面冷却水箱12b对着下表面冷却装置的冷却水箱12a而设置。在此上表面冷却水箱12b上,以在宽度方向30mm间隔,长度方向30mm间隔配置喷射冷却水的冷却水喷嘴15。冷却水喷嘴15使用流线喷嘴。

使钢带表面与冷却水喷嘴顶端16的距离Xb为30mm,钢带表面与下表面防护部件10b的上表面的距离Yb为15mm,下表面防护部件10b与上表面冷却水箱12b的Zb为30mm。

此外,作为比较例,将如图15所示的冷却装置设置于热轧钢带的生产线,进行同样的实验。

在此比较例中使用的冷却装置中,冷却水喷嘴埋入冷却水箱22内,喷嘴顶端位于冷却水箱22的表面,其他与图13的本发明的冷却装置大致相同。只是使钢带表面与冷却水喷嘴顶端的距离X为60mm,钢带表面与防护部件20的距离Y为20mm,防护部件20与冷却水箱22的距离Z为15mm。

在图16表示钢带宽度方向的温度分布。

以本发明的热轧钢带的冷却装置进行冷却时,钢带宽度方向的温度分布为±20℃左右,在宽度方向进行了均匀的冷却。此时,热轧钢带的强度的宽度方向变动为20Mpa。

另一方面,在比较例中,钢带宽度方向的温度分布为±50℃以上,在宽度方向得到正V字形的温度分布。此外,由于钢带宽度两端部的温度高,因而形状紊乱不能进行正常的卷绕。并且热轧钢带的强度的宽度方向变动为80Mpa。

而且,如果将使用于比较例的冷却装置的防护部件靠近钢带,可在钢带宽度方向得到逆V字形的温度分布。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号