首页> 中国专利> 制造基本连续不断的细丝的方法和装置

制造基本连续不断的细丝的方法和装置

摘要

提出了由聚合物溶液且尤其是用于异形纤维物质的纺丝原液制造基本连续不断的细丝的方法和装置,其中,该纺丝原液从至少一个喷丝孔或喷丝缝中被纺出,并且被纺出的丝或薄膜通过借助一个其最窄横截面在纺丝原液出口处之下的拉瓦尔喷口被加速到高速的气流被拉长。所述丝以非纺造织物形式被铺放在一带上并随后在凝固浴中与溶剂分离开。

著录项

  • 公开/公告号CN1492952A

    专利类型发明专利

  • 公开/公告日2004-04-28

    原文格式PDF

  • 申请/专利权人 吕德·格金;

    申请/专利号CN01822822.4

  • 发明设计人 吕德·格金;

    申请日2001-12-21

  • 分类号D01D5/098;D01F2/00;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人胡强

  • 地址 德国柏林

  • 入库时间 2023-12-17 15:18:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2007-06-20

    授权

    授权

  • 2004-06-30

    实质审查的生效

    实质审查的生效

  • 2004-04-28

    公开

    公开

说明书

技术领域

本发明涉及由天然或人造的聚合物溶液制造细丝的方法和装置。

背景技术

从很多年前开始,就已经按照热空气喷气纺丝法即所谓的熔喷法来制造细丝(也被称作微丝),但大多是长度有限的微纤维,为此,目前有不同的装置。它们的共同点是,在一行(也可能是彼此平行的多行)熔孔的旁边,牵拉长丝的热空气流出。通过与周围冷空气混合,这些丝或长度有限的纤维被冷却和凝固,随后通常(但在大多数情况下不希望如此)出现断丝。熔喷法的缺点在于,用于高速流动的热空气的能耗很高,而且单个喷丝孔(即使它随着时间的推移而逐渐变粗,直到孔径为0.25mm时孔间距达到0.6mm)的通流量有限,在丝直径小于3μm的情况下,出现断裂,这导致在随后的复合织物中出现粗节和突出纤维,聚合物因产生细丝所需的高空气温度而在明显高于熔点的情况下受到热损伤。已经提出并要求保护很多种喷丝头,所述喷丝头是较为复杂的喷射工具,它们必须高精度地制造。它们昂贵,容易在工作中出故障并难于清理。

如WO98/26122、WO98/07911和WO99/47733所述,这些熔喷法被用来由异形纤维(lyocell)物质制造长度有限的纤维,即由溶剂,通常是NMMO(N-甲基吗啡啉-N-氧化物),纺出溶解的纤维素。

在法国专利说明书FR2735794中描述了一种方法,其中来自一个或多个喷丝孔的纤维素物质通过胀裂(éclatement)而分裂成单独微粒并且通过气流被拉成长度有限的纤维。纤维形成过程是在紊流情况下进行的。

由溶液纺出异形纤维的一个主要问题是纺丝可靠性。不溶微粒或不均匀地富含纤维素的物质导致断丝,所以必须特别当心避免这两个决定参数。这导致装置的特殊实施形式、对环境条件的要求以及在较窄范围内实施并因而易受影响的纺丝过程。

发明内容

因此,本发明的任务是提供用于由聚合物溶液制造基本连续不断的细丝的改进方法和装置,细丝不会受到拉长它们的气流的热损害并且需要更小能耗并可以通过结构简单的纺丝工具来生产。

在德国专利DE 19929709C2号中描述了一种方法和装置,据此由聚合物熔体来制造基本连续不断的细丝。熔融的聚合物细丝离开喷丝孔,喷丝孔被布置成一行或平行的几行或排列成圈,细丝进入一个填充有气体且一般是空气的并与环境隔开的压力腔并在腔室出口进入一个气体快速加速区,在这里,出口被成拉瓦尔喷口形式。

通过剪切力传输给各细丝的力增大了,直径大大缩小,在其仍是液态的内部中的压力与其半径成反比地因表面张力作用而相应大大增大。通过气体加速,其压力根据流体力学规则降低。此外,纺丝原液温度情况、气流情况及其快速加速相互协调,从而丝在凝固前在内部达到了液静压力,该液静压力大于环境气压,从而丝并排分裂成许多细丝。丝和空气借助所述缝隙在腔室底部离开该开。在缝隙内或缝隙后并且在其它方面没有改变的条件下,分裂令人惊异地稳定发生在特定位置上。在高加速区域内,气流和丝流平行延伸,在这里,在丝周围的流动界层是分层的。没有形成粗节和断裂地进行原始单丝的不断分裂。在使用具有环境温度或略高于环境温度的温度的气流的情况下,由单丝制成其丝细很多的多纤维丝。

可在分裂位置后进一步牵拉细丝,直到它们凝固。由于突然产生的细丝面较大,这发生得非常快。丝是连续不断的。受技术阻碍的影响,可能无关紧要地出现长度有限的丝,但大多是连续不断的细单丝。

在DE 19929709中的所用纺丝原液是可熔聚合物。这些聚合物可以是人造的或天然的。在基于天然原材料的纤维中,尤其是那些后上蜡的原材料纤维素让人感兴趣。

事实表明,这些分裂细丝方法也可如此用于异形纤维的纺丝原液,即纤维素溶解在N-甲基吗啡啉-N-氧化物和水中并且经喷丝孔挤出细丝。也可以使用其它溶剂,但NMMO迄今为止证明是最适合的。成溶液形式的纺丝原液如上所述被拉长并且细丝经过由拉瓦尔喷口规定的间隙,细丝在间隙中被拉得更细并随后进入浴槽,在浴槽中,纤维素凝成丝且溶剂被加入浴槽,其因为不断浓缩而更新且溶剂被回收。

本发明方法的特征在于,伴随的气流且通常是空气流在离开喷丝孔之后马上跟随液态的原液细丝并通过剪切应力拉伸该细丝。它们由此获得了取向和冷却,这两者导致强度增大和有危害的断裂的减少,甚至完全防止了有危害的断裂。由于气流与周围大气(主要是空气)混合,该气流实际上减速,细丝不再遇到因速度快而造成的初始应力,但保持连续不断并且在断裂时仍然被气流运载。如果通过如蒸汽或水的喷射还没有开始纤维素的沉积,则细丝仍然是最初的可溶物质。细丝可以被放在筛带上并与伴随气流分离,如在纺粘型非纺造织物方法中知道的那样,气体(空气)流过筛带并在筛带下方被抽走,排列成非纺造织物形式的细丝现在只被供给凝固浴。在纺制异形纤维时,由于牵拉气流对细丝的强制导向,所以无法很精确地遵守首先是喷丝孔的毛细管直径,随后是间隙及其温度和调换以及对尽量不含不溶微粒的熔体的均匀性的要求,该不溶部分只允许有几个ppm。因为可以实现在喷嘴出口与收集带之间的1m和2m的距离,所以细丝形成空间和布置空间容易接近。

代替从溶解材料中把细丝铺放成非纺造织物并随后将它们送入凝固浴中,按照本发明的方法,可以按照相同方式来纺丝并使它们与伴随气流分离,因为气流在该装置中被侧向抽吸,如德国专利4236514中所规定的那样。单丝或细丝纱线被供给凝固浴装置以使纤维素凝结并且被缠绕成卷。

与由人造聚合物如聚乙烯、聚丙烯、聚酰胺、聚酯等制造微丝不同,只是有条件地需要将溶液物质流分散以形成较细的或最细的丝。如上所述,在去除熔剂后,因凝结而相应于溶液材料中的纤维素量地在10%浓度下,即在异形纤维纺丝法中常见的浓度下,出现没有分裂的直径小于10μm的丝,事实证明,由于NMMO纤维素溶液的截然不同于人造聚合物的特殊粘性,所以,分裂成许多并排的丝只有在纺织材料含较少纤维素时无关紧要地进行。尽管对人造聚合物来说,温度升高足以通过借助细丝内压力升高的表面张力作用来分裂细丝,但在异形纤维情况下,在远高于100℃时,这些易损材料出现损伤,因而细丝达不到强度和其它的预期特性。

而事实证明,其它的天然聚合物可以按照如DE19929709所述和在此提出的方法被加工成基本连续不断的细丝。它们在分裂方面的性能与人造聚合物一样或根据类型而更象异形纤维的纤维素材料。

可被纺成细丝的另一种天然聚合物是聚交酯PLA,它是在淀粉如谷类或玉米淀粉的基础上获得的,但也可从乳清或糖中获得。由PLA制成的材料具有特殊性能,它们可生物降解,其中降解即分解成二氧化碳和水也可以按照一定时间来调节,并且它们对人体无害。在这里,通过分裂纺丝法,可以制造非常细的丝,如同在熔喷法缺点的情况下获得的的丝,所述缺点就是必须把大量空气至少升温到熔点之上,在这里,聚合物大多受到损害。

另一个目的是,通过高的纺丝原液通流量和低的特定空气损耗和进而能耗来提高细丝生产的经济性。事实表明,各种各样的天然或人造的塑料溶液不仅可以被如此制成细丝,即它们从圆形或异形的独立开口被挤出并随后被气流或空气流拉伸,而且可以与从独立开口中制造单丝完全相同的方式生产出分裂丝。另外,如上所述,纺丝原液从纵向延伸的缝形喷嘴中被挤入与周围隔离的特定压力腔内,气体如空气被输入该腔室内,在这里,薄膜在该腔室出口经过快速加速气体的区域而进入纵向缝隙。在加速区下方即在松弛区内,薄膜分裂,然后产生基本连续不断的成堆细丝,但与由单丝分裂出的细丝不同,这些细丝有截然不同的直径和结形增厚部。这发生在纺丝原液仍然是熔体的状态下,并且可以在一定限度内通主要工艺参数如熔点、熔体通流量和拉伸气体(通常是空气)来调整。因此,随后也可以卷绕起来的单独细丝不能通过分裂薄膜而制成,但非纺造织物可以。这些由无序铺放的不同粗细的丝构成的粘纺型非纺造织物具有优点并且类似于天然物质,其中包括较大范围的组成该天然物质的不同独立元素或者说纤维和丝,就象在在皮革和木头的情况下,其不同的单独纤维造就了其特殊的且大多有利的特性。

对这两个过程中,即单丝分裂或薄膜的分裂,纺丝原液温度具有最大影响,因为它决定了粘性和进而成丝量及表面张力以及在单丝和薄膜内的压力形成。因此,不希望过早地冷却丝,相反,在离开喷丝孔后就马上升高温度可能是有利的。在单丝和薄膜的情况下,分裂机理类似但不同。在单丝情况下,当内部压力大于周围气流的压力时出现分裂。这在分裂纺丝法中如此进行,即丝直径除通常较小的重力影响以外因伴随气流而减小,该气流不断加速,而气压根据流体定律降低。由于表面张力原因,液态单丝内的压力增大。在单丝中,当液体表皮不再使细丝保持在一起时,单丝由于突然破裂而四散。在拉长薄膜期间内,在薄膜宽度上产生不同压力,确切地说,边缘压力由于在那的弯曲而产生的表面张力较高。即使根据本发明尽可能长距离地分层保持气流,这种薄膜基本上也不稳定。结果,在薄膜宽度上出现皱纹、条纹和断裂,结果形成丝状或带状独立部分(也称作牵丝)。

根据本发明,以旋转对称或纵向伸长的并带有朝向最窄横截面收敛并随后急剧扩宽的拉瓦尔喷口形式,实现了在气流中的强加速区和压降区,因而,新形成的且并列移动的单丝不能粘附在壁上。在最窄横截面处,在适当选择腔室压力的情况下(在空气的情况下,约高达环境压力的两倍),主要存在音速,而在拉瓦尔喷口的扩宽部分处,主要存在超音速。

为了制造粘丝非纺造织物(纺粘型非纺造织物),使用了带有成行设置的喷丝孔且成矩形或槽形的喷丝头和有矩形横截面的拉瓦尔喷口。为了制造纱线和特殊类型的非纺造织物,也可以使用有一个或几个喷丝孔的圆形喷嘴和旋转对称的拉瓦尔喷口。

本发明的优势在于,可以简单经济地制造10μm以下如2μm-5μm的微丝,如在借助熔喷法简单拉长的情况下,只能用被加热到熔点以上的热气(空气)喷射才能完成,因此需要较多能量。另外,细丝的分子结构没有受到会造成强度降低的过高温度的损害,结果,它们经常可以从织物网中擦掉。进一步的优势在于,细丝是不断或接近连续不断的,它不会从纤维网如非纺造织物中突出来并不能成绒毛状掉出来。实现本发明方法的装置较为简单。正如缝形喷嘴那样,喷丝头的喷丝孔可以较大,因此不容易出故障。拉瓦尔喷口横截面的精度不需要熔喷法的侧通气缝的较小允许公差。在特定聚合物的情况下,只要使溶液温度和腔室压力相互协调,并且在每个喷丝孔的通流量和喷丝头相对拉瓦尔喷口的几何位置确定的情况下,出现分裂。在异形纤维情况下,溶液丝变薄到预期直径,只是偶尔发生分裂。

本发明的一个改进方案是,在分裂前,尽可能小地冷却无论是作为单丝而成圆形的溶液锥,还是作为薄膜而成楔形的溶液锥,此外,把它加热到较高温度。为此,相对气流被屏蔽住的加热装置固定在出口(成行的孔或槽)的两侧。一方面,这些加热装置在出口区里从外面将热输入纺丝原液,并在允许高速和进而较强传热的地方上使温度上升,另一方面,这些加热装置属于把热量辐射到正在形成的纺丝原液的锥形或楔形部分的类型。

附图说明

下面参考附图来详细地说明本发明的实施例。

图1是制造丝的本发明装置的局部截面示意图。

图2是根据一实施例的本发明装置的透视图,该装置有成行的喷嘴和喷丝孔并且用于由微丝制造异形纤维-非纺造织物。

图3是根据例3并通过爆裂熔体薄膜制成的PP分裂丝的显微照片。

图4是在根据图3的条件下并通过单丝的分裂而制成的PP分裂细丝的照片。

具体实施方式

图1表示喷丝头1下部和一所属拉瓦尔喷口的截面,其中该截面不仅适用于纺出丝或单丝的旋转对称型喷丝头和旋转对称型拉瓦尔喷口,而且适用于缝形或矩形的纺出薄膜的喷丝头和相应成矩形的拉瓦尔喷口。也可以设置一个具有许多成行排列的喷丝孔的喷丝头和相应的纵向延伸的拉瓦尔喷口。板11、11’留出一道缝隙12’地在喷丝头1下面,该缝隙从喷丝头看过去地逐渐缩小并随后略微扩展并在板11、11’的底边上急剧扩宽,由此形成了拉瓦尔喷口。喷丝头或喷丝头的喷丝孔就结束于拉瓦尔喷口之上或在板11、11’的上平面内,必要时,喷丝头1也可以略突入开口12中。

在喷丝头1与板11、11’之间有一封闭空间,一压缩机如箭头6、6’所示地把气体供应给该封闭空间。气体可以是空气,它通常具有环境温度,但其温度可以略高一些,如70°-80°,这是因为由压缩机产生了压缩热。喷丝头1被一绝缘装置8、8’包围,绝缘装置8、8’用来保护被加热到纺丝温度的喷丝头受到热损伤,在喷丝头1与绝缘装置8、8’之间,也可以有利地设置一个间隙9。喷丝头1有一出口4,在出口区内安装有一加热装置10、10’,在此实施例中,加热装置10、10’成一扁平加热带形式并且它有利地与绝缘装置8、8’隔绝开,以避免由部件13和13’造成的热损伤。在板11、11’下方的空间通常具有环境压力即大气压,而在喷丝头1与板11、11’之间空间内的气体处于更高的压力下。在随后马上继续加工成非纺造织物、纱线或其它丝结构时,在板11、11’下方的空间可以具有略高于大气压如高几毫巴的压力,这是继续加工如铺放成非纺造织物或其它细丝收集装置所需要的。

一聚合物溶液2即例如异形纤维沿所画箭头3流向喷丝头1出口4。它形成丝5或薄膜,因为气流,它在继续移动时变细变窄,所述气流沿所示箭头6、6’来自侧上方地在板11、11’的表面轮廓和绝缘装置8、8’的外表面7、7’之间流过。加热装置10、10’从外面加热出口4的毛细管并且以其相应延长形成的底部并基本上以辐射形式来加热在毛细管旁流过的纺丝原液。按照在12处具有最窄横截面的拉瓦尔喷口的形式,丝5或薄膜到达了由板的部分11、11’构成的、气流6、6’流动截面的瓶颈处12’。直到那里,气体流速不断增大,并且如果超过了在板11、11’之上的室内气体的静止状态下的压力p1同在最窄位置上的压力pe的临界压力比,则在最窄横截面12处出现音速。通过使拉瓦尔喷口朝向在板11、11’下方的有压力p2的空间地加宽,在超临界压力比的情况下,也可能出现超音速。通常,该拉瓦尔喷口在最窄横截面12之后不久就急剧变宽,以避免丝由于就在拉瓦尔喷口之下开始在该区域内分裂而粘附在板11、11’上。

在所示实例中,当丝表层无法再保持溶液丝不受因丝收缩而增大的内压的影响时,丝5就爆裂开或分裂开。单丝分解成单丝,它们因在溶液与气体或空气之间的温差以及单丝表面(与丝材质有关)突然显著增大而快速变冷。因此,产生了一定数量的非常细的且基本连续不断的单根丝。在异形纤维溶液的情况下,分裂现象不经常出现,即在图1中,正在分裂的细丝将继续。丝通过速度不断加快的分层气流被拉长,从而最终因为纤维素含量等于或低于10%而出现细丝。

溶液膜也就在拉瓦尔喷口之下裂开,其中在分裂前的薄膜内压力比在宽度上是不同的并且薄膜变得不稳定。就在分裂前,在薄膜宽度上出现皱纹和条纹,然后较细的丝分裂,但较粗的丝没有。

这种分裂过程的本质造成了,在分裂位置后产生的丝数量可能不是不变的,该分裂位置可以仍然在拉瓦尔喷口内或例如在拉瓦尔喷口最窄处的下面5mm-25mm。因为丝或薄膜和气体一起在到达分裂位置前或在最终拉长丝之前所经过的路程短,所以在丝周围的流动界层是分层的。来自输入管的空气也尽可能分层地被送往分裂区,其优点是,流动损失少以及分裂过程在时间上的一致性。如在拉瓦尔喷口横截面内的加速流体保持分层状态,并且如果事先存在一定紊流,所述加速流体甚至可以重叠。

图2是用于本发明方法的设备的透视图,其中一异形纤维物质130被供应给一装置30并由此得到非纺造织物20。产生基本连续不断的丝的装置30对应于如图1所示的装置,许多喷丝头或喷丝孔如图1所示地成行布置,该拉瓦尔喷口纵向延伸或成矩形构造。离开单独喷丝孔的单丝因气流剪切应力而逐渐变细并或许在未示出的拉瓦尔喷口的缝隙底部中或略靠下地分裂成许多丝,但在异形纤维的情况下分裂不明显。在异形纤维情况下,主要纺出单丝。

伴随气流使单丝移向一收集带50,仍然干燥的丝被铺放在那里。这在本方法中是可行的并且与异形纤维方法相比有非常大的优势,在异形纤维法中,在几厘米的短间隙后立即把丝引入凝固浴中,所述凝固浴通常是水。在干燥放置路程下,有一个如用箱子60表示的抽吸装置,这在纺粘型非纺造织物法中是常见的,从而伴随气流通过未示出的抽吸装置被抽走。为在凝固浴70液面下方没有由筛带筛出丝地进行丝的引导,在这里通过筛带排走凝固浴(主要是水),细节未详细示出,或设有一个接触或不接触水面的辊89,它把非纺造织物压入凝固浴70中。当收集带50回移时,非纺造织物20被送去进一步加工如压平、干燥和继续加工如喷水凝固。

已经沿箭头120、120’方向预先排出部分空气,因此,箱110、110’具有未示出的转向丝的透气面。

如果丝不用被加工成非纺造织物,而是要加工成连续纱线,则尤其可以采用这种沿丝片横向的抽吸,在溶剂和纤维素材料因凝结而预先相互分开后,纱线被卷成卷或被切成短纤维。

本发明方法的特点是,在丝离开喷丝孔后并且可能在它们分裂后,丝经历了由基本上与之平行的气流(通常是空气流)而产生的剪切应力。因此,这与为纺丝而由卷绕装置或其它类型装置施加的力是不同的。来自喷丝孔的纺丝原液只经得住较低的张力,因而采用现有技术的方法是无法生产出非常细的丝的,因为在喷嘴出口与凝结液之间间隙内,纺丝原液只能被拉成较细的丝,随后就不能继续拉细了。根据本方法,变形所需的力是剪切应力(除非常小的重力作用外),它不象张力那样在丝横截面上对丝施加力,因而,几乎不发生断裂。

可以如此在纺丝装置30与安放面51之间开始进行溶于溶剂(在这里是NMMO)中的丝聚合物的凝结,在这里是异形纤维的纤维素,即从侧面将水水雾或蒸汽喷向丝片,就是说,在那里安装上述的用于空气的吸气箱110、110’,因而,通过正好与排出空气相反的方式把湿空气或蒸汽引入丝片中。这样做的效果是,在该系统之前,该细丝的外表面已经含在纤维素部分内并且彼此间的粘结不象它们被铺放成非纺造织物时那样强。然后,把非纺造织物引入一凝固浴中,在这里,随后只通过压力辊或在一也被加热的滚筒和筛带之间出现自粘结。它们在最好较低的压力下相互连接是因为所产生的异形纤维较软并且它们已经彼此粘附。这种自动粘结由异形纤维制造非纺造织物时另一个独特优势。如果凝结已开始,则粘结不太强烈,与事先不喷水而只是拉过凝固浴的并因而密实并有坚硬的纸张手感的非纺造织物比,获得了有织物手感的更柔软的非纺造织物。

当然,在图2所示的槽后,可以加入凝结或冲洗溶剂的其它步骤。为此,也可以使用筛筒洗衣机,如在纺织工业中所使用的,其中非纺造织物在特定圆周段内缠绕筛筒并且水经过非纺造织物和筛筒而轴向排走并且又被供给液池或用于分离出水和溶剂如NMMO。随后,非纺造织物必须被干燥,为此,使用筛筒干燥器。因为异形纤维通常发生较大收缩,所以非纺造织物可以在一被热空气流过的抽吸滚筒和一个围绕它的并以相同速度运动筛带之间导向经过。

例1

通过螺杆挤出机,在75%的含水NMMO溶液中的13%纤维素和12%的水被供给一纺丝装置,它包括一个带有一孔的喷丝头和一圆形拉瓦尔喷口,唯一的喷丝孔的孔径为0.5mm。按工业规模生产溶液并直接通过泵传输并定量供应给纺丝装置。异形纤维物质在挤出机出口处的温度为94℃。在锥形喷嘴头端的下部安装有一个功率为50W-300W的电阻加热器来进行加热。在约22℃的室温下,空气拉长细丝长,在拉瓦尔喷口内加速之前,所测压力被调整到比大气压高0.05巴-3巴。异形纤维物质从喷嘴口流出只有很小变化并且在该拉瓦尔喷口收缩平面上1mm-2mm,在这里,正好在此平面内甚至是在它下面即在下游方向的1mm-2mm处进一步调整。该拉瓦尔喷口在最窄横截面处有4mm宽度,从收缩平面开始到就在最窄横截面后的扩宽处测得的总长为10mm。

表1表示设定条件1-11。发现了喷嘴口的加热装置10的特殊影响,这样,纺丝原液在离开该喷丝孔之前获得了升高温度,确切地说,明显高于初始温度94℃。丝在某些设定条件下只是部分分裂,尤其是在较低气压和较低温度时基本没有分裂。这是如此确认的,即对比由测得的纺丝原液通流量和因溶剂去除而缩小直径得到的平均最终丝径算出的丝速度与最大空气速度即在拉瓦尔喷口缝隙内的速度(如果之后没有发生超音速)。如果高了,则丝可以分裂,这要看速度差多少。如果低于算出的平均丝速度,则它们大多不分裂,如果两者一样,则一些丝分裂,而一些不分裂,因为一切都走平均值。通常可以观察到,与合成聚合物如聚丙烯相比,异形纤维因不易分裂而已引起人们注意。

甚至是在每个喷丝孔的通流量超过4g/min的情况下,也能制造10μm以下的细丝。较高气压p1在一定限度内导致较细的丝,直到喷嘴头因强烈散热到气流中而变冷并也很难发生分裂。增大空气速度的影响由于在拉瓦尔喷口前加大的气压而可以部分由喷嘴头处升高的空气温度来平衡。此外,喷嘴头相对拉瓦尔喷口的位置可产生影响。因此,这两个主要影响参数即纺丝原液温度和空气流动的剪切作用对分裂起到决定性作用。

序号    Mo       P1        Ph       g/min    mbar       W    d50    CV    μm     %  1    3.4      80         79  2    3.4      150        97  3    3.4      150        116  4    3.4      150        130  5    3.4      200        130  6    3.4      100        130  7    11.1     400        370  8    6.65     1000       370  9    3.68     1500       276  10   2.33     1500       280  11   4.57     3000       208    26.2    26    24.9    20    19.0    24    13.2    29    12.0    17    10.1    64    24.4    47    13.4    38    11.1    36    8.3     33    9.1     54

例2

在如图1所示装置中,从直径0.6mm的喷丝孔中纺出在78%NMMO中含8%纤维素的且其余为水14%的溶液。溶液在挤出机出口处的温度为115℃,在溶液分配腔并在共20个喷丝孔前的温度为114℃。该喷嘴头两侧的加热装置的加热功率为450W。每个喷丝孔的通流量为3.6g/min。

根据未加热空气的压力,得到以下基本连续不断的异形纤维直径。

表2

  序  号    P1    mbar    d50    μm    dmin    μm    dmax    μm    CV    %    ULe    m/s    UF50    m/s  5    160    8.5    2.8    21.1    59    156    67  7    200    8.0    3.7    14.7    39    173    78  9    250    9.7    2.7    16.3    39    192    52  11    300    9.2    5.1    18.4    43    209    61

尽管在拉瓦尔喷口前测得的空气压力p1增大,但丝再次从p1=200mbar变粗,因为快速的空气流动产生了快速冷却。

也提到了拉瓦尔喷口最窄横截面处的空气速度uLe、在进入该凝固浴之前的且随后的平均直径为d50的异形纤维的速度uF50。如果uF50大于uLe,则可以发生分裂。因此,该值仍必须显著不同,因为在此处也可以产生比对应于在纺丝方法期间内算出的空气速度最大值即拉瓦尔喷口最窄缝隙内的空气速度最大值的直径还要小的直径,这是由于在此出现主流横向剥离或耗尽的纤维素浓度。

由于在离开喷丝孔之前提高溶液温度,所以,丝径可以进一步缩小,但在这种情况下,温度是有限的,因为溶液分解了,所以借助在下喷丝头部内的熔化腔的相应构造来选择尽可能短地待在升高温度下的停留时间。在那里出现123℃而不是以前的114℃时,在一组中uF>uLe的情况下,单丝份量象表2中序号7那样偶然增大。

该纵向喷嘴的喷嘴孔(20个排成一行的孔)在流动方向上突入拉瓦尔喷口内达2mm。此外,保持3mm的收缩距离,直到拉瓦尔喷口的最窄横截面。因此,在丝片两侧出现一缩小缝隙。这样,在从输入流至拉瓦尔喷口最窄横截面的很短路程中出现不断加速的气流。在在丝离开喷丝孔后的成丝区域内,主要存在层流。即使在干扰小的情况下,强烈收缩及进而流动加速也会造成再次分层,就象在喷嘴流中看到的那样,结果,不断增强的气流uL拉长缓慢离开该喷丝孔的丝,并且速度uF也不断增大。紊乱性的波动流体脉冲会扰乱此过程并就象在其它已知方法中那样出现纺丝原液四(如从异形纤维溶液中)并且这些丝不再是基本连续不断的。另外,在本发明方法中,在几毫米移动长度内的变形是在达到最窄横截面之前都逐渐增大的高剪切应力下进行的,这是基本无断裂地成丝的原因,因为速度uL(X)最大值=在拉瓦尔喷口之下,而不是在原液出口的旁边。

通过调定纺丝原液通流量的特定值、其温度和在纵向喷嘴时的扁平缝隙内或在圆形喷嘴时的环形缝隙内的空气速度,可以如例1、2所示地控制基本连续不断的细丝的直径。就象在所有提及情况下,每个喷丝孔的通流量大于已渐为人知的异形纤维的熔喷法。原因是强加速流动即起动流体造成高剪切应力,结果在丝上有很薄的边界层。

例3

在类似于图1所示装置的一纺丝装置中,从0.9mm宽、20mm长的缝隙中,355℃的聚丙烯熔体从一个底下成隔板状终止的喷丝头中被纺出。空气用作该薄膜的拉伸气体。在11.5g/min的通流量和在室温20℃下的250毫巴气压下,对应于变异系数CV=37%地出现了偏差s=1.9μm的且平均直径为5.2μm的丝。此外,没有同时测量在非纺造织物中的厚结位置。图3表示所产生的非纺造织物,它示出了根据例2的PP分裂细丝的显微照片。在图4中用于对比地示出了聚丙烯分裂细丝,在其它方面相同的情况下,从直径为1mm的且每孔通流量为3.6g/min的圆形喷丝孔中纺出丝。图4中的丝具有8.6mm的平均直径,变异系数为48%。

以上对本发明方法及其装置的描述也可以用到其它可溶液纺丝的丝聚合物,如也可以用于传统的粘胶长丝或人造丝中,以及把它们进一步加工成非纺造织物或纱线。除了所提及的纺丝可靠性外,应该进一步提及的是,该装置简单、能量消耗与熔喷法相比非常小,并且因为以达到音速甚至超音速的速度施加剪切应力而产生较大的拉长以及在拉瓦尔喷口中产生这样的速度,所以使用令人惊讶的粗喷丝孔和宽槽。因此,纺丝原液内的杂质对细丝断裂不再如此重要。在异形纤维情况下,较多半纤维素可以被加工成丝,并且纤维素的聚合程度也可以较低,结果,原料通常比较廉价,因为在生产时没有较高的张力施加到作为由溶液材料制成的细丝的异形纤维丝上。在异形纤维情况下,尤其是在高温下对溶液聚合物纺丝的情况下,基本上只使用冷空气或来自空气雾化的废热空气非常有助于节能。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号