首页> 中国专利> 正链RNA病毒复制子颗粒的包装

正链RNA病毒复制子颗粒的包装

摘要

本发明总的来讲涉及重组多核苷酸、正链RNA病毒(psRNAV)重组表达载体和包装系统。所述包装系统基于通过包含重组多核苷酸的重组痘病毒载体的共感染表达辅助功能物。公开了采用这些包装系统获得psRNAV复制子颗粒的方法。提供包含本发明复制子颗粒的免疫原性组合物和药用制剂。也提供产生免疫应答或产生药学效应的方法。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2009-11-04

    专利权的终止(未缴年费专利权终止)

    专利权的终止(未缴年费专利权终止)

  • 2006-04-12

    授权

    授权

  • 2004-04-07

    实质审查的生效

    实质审查的生效

  • 2004-01-28

    公开

    公开

说明书

发明领域

本发明总的来讲涉及重组多核苷酸、正链RNA病毒重组表达载体和包装系统。所述包装系统基于用重组载体(例如重组痘病毒载体)共感染细胞来表达断裂-辅助功能物。

发明背景

事实上,重组DNA技术现在已经使得可以利用病毒将实际上任何目的基因导入几乎任何目的细胞中。因为这类病毒被工程改造以“表达”目的基因,即产生由所述基因编码的蛋白质,所以它们被称为“病毒表达载体”。

最近的关注集中于甲病毒(alphavims),甲病毒是通过节肢动物传播至哺乳动物的正链RNA病毒(其核酸为RNA而不是DNA形式的病毒)(有关综述参见(16)和(17))。正链RNA病毒、特别是甲病毒属由于以下几种原因成为尤其有吸引力的病毒表达载体:1)其基因组容易以cDNA形式操作并且作为裸RNA是有感染性的,2)其复制循环仅仅是细胞质性的,3)外源基因表达由强病毒启动子驱动,和4)它们在体外具有广宿主范围。

在结构上,如图1所示,甲病毒基因组是单链RNA,长约11.7千碱基(kb),所述RNA在5′端“加帽”,而在3′端“聚腺苷酸化”。基因组5′端的三分之二编码非结构蛋白(nsP),而3′端的三分之一编码结构蛋白(sP)。图1也显示非结构蛋白既负责复制(拷贝)整个RNA序列,也负责转录导致结构蛋白翻译的“亚基因组”RNA(有关综述参见(32)和(34))。

对于复制,nsP直接从感染性病毒基因组(称为(+)RNA)翻译,如图1步骤1所示(各步骤以包含数字的黑色圆圈表示)。nsP翻译产生构成“复制/转录复合体”的4种蛋白质,包含“复制酶”和“转录酶”。如步骤2所示,所述复制酶/转录酶介导基因组长度互补链(称为(-)RNA,也称为“反基因组”)的合成。在步骤3中,所述复制酶/转录酶随后利用反基因组为模板产生额外拷贝的(+)全长RNA。

如步骤4的前述步骤所示,所述反基因组也可用作可供所述基因组最后三分之一转录为亚基因组mRNA的模板。如上所述,基因组3′的三分之一编码sP,因此所述亚基因组mRNA编码所述sP。sP以大的“多聚蛋白质”形式编码,然后加工,产生1个衣壳蛋白和称为E1和E2的2个包膜蛋白。亚基因组区段的转录由跨越nsP编码区和sP编码区之间接点并且作为“启动子”起作用的核苷酸介导。从亚基因组启动子转录可以产生可以达到106拷贝/细胞、每个受感染细胞可产生108病毒结构蛋白的水平的亚基因组mRNA,(30)。

如步骤4所示,一旦合成包膜蛋白和衣壳蛋白,则衣壳蛋白与已复制的基因组RNA相互作用形成“核衣壳”,然后被包膜蛋白包装。位于基因组RNA nsP编码序列内的“包装信号”可用来促进该过程。因为亚基因组RNA缺乏这些包装信号,所以只有基因组RNA被包衣壳。

披膜病毒科(Togaviridae)和黄病毒科(Flaviviridae)中的病毒具有相似的有包膜二十面体核衣壳结构,认为它们从共同的祖病毒进化而来(54)。甲病毒和风疹病毒(rubella virus)(例如风疹病毒)(两者均为披膜病毒科成员)具有相似的基因组结构和复制循环(参见图22)。复制酶/转录酶复合体直接从基因组5′-端翻译,而sP从存在于反义RNA上的亚基因组启动子下游转录。黄病毒科中的病毒(例如登革病毒(Denguevirus)、丙型肝炎病毒(hepatitis C virus)、蜱传脑炎病毒(tick-borneencephalitis virus))全都具有共同的基因组组构和复制策略。与披膜病毒不同,黄病毒基因组作为编码sP和nSP两者的多聚蛋白质的mRNA起作用。这些基因产物的表达在翻译后步骤进行调节;在黄病毒科中不存在亚基因组转录。此外,基因排列被倒位,即sP基因位于nSP上游。尽管这些病毒在其基因组排列和复制策略方面不同,但是它们可以替代本文所述的病毒。例如,通过采用基本上与本文所述技术类似的技术,可以将其如下工程改造为复制子表达载体:除去sP编码区((55)、(56)),并且通过提供反式sP将其包装成病毒样颗粒(57)。

已经工程改造为活的表达载体/复制缺陷型表达载体的其它正链RNA病毒包括脊髓灰质炎病毒(poliovirus)(58)和冠状病毒(coronavirus)(59)。尽管它们也与甲病毒属不同,但是可以应用与本文所述技术类似的技术,对衍生于这些病毒的复制子载体进行包装。

对甲病毒的复制/转录过程以及其核酸序列的了解使其可用作表达载体。若干甲病毒已经测序,并且下述病毒的感染性cDNA克隆也已经工程改造:新培斯病毒(Sindbis virus)(SV;(31))、西门利启森林病毒(Semliki Forest virus)(SFV;(20))、委内瑞拉马脑脊髓炎病毒(Venezuelan equine encephalomyelitis virus)(VEE;(11))和罗斯河病毒(Ross River virus)(RRV;(18))。已经表明,基于SV、SFV和VEE的载体有作为有效基因表达系统的前景(有关综述参见(14)、(21)、(15))。

总的来讲,存在两种类型的甲病毒表达载体。在一种类型的载体-“可复制型”载体中,加入第二个亚基因组启动子,以指导外源(异源)基因的表达。这种类型的双亚基因组启动子载体表达目的外源基因以及病毒包装所需的所有结构组分;因此,这些载体可自我复制和自我包装。这种系统显而易见的缺点是可产生活病毒。

为了将活病毒的可能产生减至最低,甲病毒表达载体已经进一步工程改造为“复制缺陷型”。这些载体通过下述方法产生:除去编码sP的基因,置换为在所述亚基因组启动子控制下的一种或多种外源基因。由于nsP编码序列保持完整,因此这些载体可以形成复制复合体并且自我复制和表达外源基因。然而它们不可自我包装,因为它们缺乏编码衣壳蛋白和包膜蛋白的sP。为了将这些载体包装成感染性颗粒,所述载体可以与“辅助”载体即在不同的RNA分子上带有所述sP的载体“反式”互补。例如,这些载体可以通过下述方法包装:将所述载体与编码病毒衣壳和糖蛋白的体外转录缺陷型辅助(DH)RNA一起共转染((19)、(5)),或者通过将所述复制子RNA转染到在核内启动子调节下表达DH RNA的连续包装细胞系中(26)。用任一系统,所述辅助RNA或者不被包装或者包装效率非常低,由于其缺乏存在于所述nsP编码区内的包装信号所致。

然而,在甲病毒复制中间体(包括复制子和DH RNA)之间常常发生重组,并且可以导致产生自我复制和自我包装型病毒((35)、(29)、(37))。这造成关于这些包装系统应用的潜在生物安全性和管理机构的担心。为了解除这些担心,科学家们研制出多种“断裂-辅助病毒”包装系统,以大大降低产生能够复制和自我包装的载体的概率((14)、(27)、(33))。所述“断裂-辅助”系统采用两种不同的DH RNA,一种编码衣壳蛋白,而另一种编码病毒糖蛋白(E2/E1)。然而,这是一种昂贵且无效的系统,因为这两种不同的DH RNA必须首先在体外转录、纯化,随后将其插入到已经制备供转染用的包装细胞中。对RNA和细胞的多次操作会导致所产生的复制子颗粒不一致。

用甲病毒感染的细胞通常产生103-104感染性病毒颗粒/细胞。相反,复制子颗粒的产生效率却低得多。用这些载体转染的细胞每个细胞通常平均产生1-50个复制子颗粒。复制子颗粒的低收率是由于在体外转录和细胞转染差的累积效应所致。例如,体外转录RNA的成功表达需要RNA在5′端加帽。对于含有两种不同DH RNA的断裂-辅助系统,存在三种必须加帽的RNA片段:两种辅助RNA和所述复制子本身。如果所述复制子在体外加帽的效率例如为65%,且其中每个DHRNA的体外加帽效率为85%,则转染效率最高为42%(0.65×0.8×0.8)。因此,表达效率受三种加帽反应和转染过程效率的限制。

总之,加帽问题是应用化学试剂的转染法效率相对低的事实。其中应用电场而不是化学药品将RNA导入细胞中的电穿孔法更为有效,但是它们需要多次操作和严格的最优化。另外,电穿孔法尚未成功用于大规模制备。

理想的包装系统应该要求应用对于基因表达最优化的有效基因传递系统。这种系统可以基于质粒或病毒载体(例如痘病毒、腺病毒、疱疹病毒、脊髓灰质炎病毒、流感病毒、逆转录病毒等)。可以用病毒载体大规模、高效感染各种各样的细胞类型。许多病毒载体已经工程改造,供最佳基因表达并且在特定细胞系中有限生长。

应用这些复制子载体的再一潜在限制是缺乏供载体颗粒用的大规模包装系统。制备用于包装例如甲病毒颗粒所需的试剂既昂贵又不实用,并且不适合于有效规模化。因此,本领域需要既安全又有经济效益的复制子表达载体和包装系统。为了亚单位疫苗基因传递、基因治疗、癌症免疫疗法和重组蛋白合成,这类载体应该可用于有效传递和表达用于大规模生产感染性复制子颗粒的psRNAV源RNA。

发明概述

本发明涉及感染性正链RNA病毒(psRNAV)复制子颗粒、重组正链RNA病毒表达载体和可供应用重组痘病毒载体生产psRNAV复制子颗粒的包装系统。这些包装系统不需要病毒RNA的体外合成或转染。而是本发明的方法和组合物应用重组DNA病毒和/或质粒将装配感染性psRNA复制子颗粒所需的组分传递至细胞中。提供用于给予宿主的方法和组合物,包括免疫原性组合物和药用制剂。也提供用于产生基于痘病毒的复制子颗粒包装系统的重组多核苷酸和载体。提供与所公开的组合物和方法一起使用的试剂盒。

本发明的某些包装系统基于用一对重组痘病毒载体共感染,所述载体的表达产物可以包装重组psRNAV复制子颗粒。该系统产生感染性复制子颗粒,包括至少一种外源基因(也就是从其天然状态取出的基因),所述外源基因可以为病毒基因。在一个示例性的实施方案中,该对的痘病毒载体基于痘苗病毒,准确地说是严格宿主限制的减毒痘苗病毒株(经修饰的痘苗病毒Ankara或MVA)。在该实施方案中,psRNAV为一种甲病毒委内瑞拉马脑炎病毒(Venezuelan equine encephalitis virus)(VEE)。该对MVA载体产生VEE衣壳和包膜蛋白,此后包装所述VEE复制子RNA,产生感染性VEE复制子颗粒(VRP)。

基于MVA的VRP包装系统依赖于复制子RNA和辅助蛋白的产生。根据MVA载体转录的RNA形式,辅助蛋白的表达可以或者是诱导型的或者是组成型的。诱导型辅助RNA在翻译前通过VEE复制酶/转录酶复制和转录。组成型辅助RNA转录为mRNA,因此直接翻译。

本发明的复制子颗粒包装系统比上述常规断裂-辅助RNA转染法产生的复制子颗粒滴度高。采用本文公开的包装系统,根据所用的包装系统,辅助功能性RNA可以或者作为DH RNA或者作为mRNA表达。在复制子包装过程中产生自我复制型感染性病毒的概率在组成型系统中进一步降低,由于所有psRNAV调节序列是所述辅助RNA所没有的。该系统提供所有已知包装系统中最高水平的安全性。

另外,本发明提供应用其它痘病毒载体大规模生产重组基因产物的方法(2)。这些方法适合于适应大量生产复制子颗粒。

所述新型重组多核苷酸和重组载体(包括重组病毒)可以采用本领域众所周知的标准克隆和分子生物学技术来制备。这些技术的描述其中可以见于Sambrook等,Molecular Cloning(1989)(38)和Ausbel等,Current Protocols in Molecular Biology(1993,包括增补本(39))。

本发明基于用作重组载体(包括重组病毒)组分、进而用作复制子颗粒包装系统组分的重组多核苷酸。在某些实施方案中,在本发明的方法中使用这些重组病毒和包装系统,以获得复制子颗粒。

在某些实施方案中,本发明的重组多核苷酸至少包含第一部分和第二部分。所述第一部分包括具有至少一个与一种依赖于DNA的RNA聚合酶编码序列操作性连接的第一异源启动子的序列。所谓“操作性连接”是指允许调节性控制例如控制表达的启动子的连接。所述第二部分包括与编码至少一种psRNAV结构蛋白、但不编码所有psRNAV结构蛋白的序列操作性连接的第二异源启动子。因此,所述第二部分可以编码psRNAV衣壳,或者可以编码psRNAV糖蛋白,但不编码它们两者。术语第一部分和第二部分不是意指所述重组多核苷酸内的任何顺序位置。因此,所述第一部分可以位于所述第二部分的上游或下游。

此外,术语第一部分和第二部分不是限制性的。例如,在某些实施方案中,重组多核苷酸包含三个或三个以上的部分。例如,第二部分可以包含编码E1糖蛋白的序列,而第三部分可以包含编码E2糖蛋白的序列。

所述第一部分和第二部分的启动子可以相同或不同。在所述第一部分中,与第一异源启动子连接的、依赖于DNA的RNA聚合酶可以是病毒聚合酶或噬菌体聚合酶,例如但不限于噬菌体T3、T7或SP6的依赖于DNA的RNA聚合酶。

在某些实施方案中,所述第一和第二异源启动子不相同。例如但不限于所述第一启动子可以包含痘病毒启动子,而所述第二启动子可以包含噬菌体启动子。在一个示例性的实施方案中,所述重组多核苷酸具有一个与噬菌体T7依赖于DNA的RNA聚合酶编码序列操作性连接的痘苗病毒合成早期/晚期启动子和一个与至少一种psRNAV结构蛋白(例如委内瑞拉马脑炎病毒糖蛋白)编码序列操作性连接的、与T7依赖于DNA的RNA聚合酶结合的第二异源启动子。

在本发明的某些实施方案中,重组多核苷酸包含一个第一部分,所述第一部包括与编码psRNAV结构蛋白中至少一种、但不是全部的序列操作性连接的第一异源启动子。因此,所述第一部分将含有编码或者psRNAV衣壳蛋白或者psRNAV糖蛋白、但不是它们两者的序列。所述第二部分包括与能够复制的psRNAV“复制子”操作性连接的第二异源启动子。所述第二部分的psRNAV复制子包括与至少一种外源多肽编码序列操作性连接的psRNAV亚基因组启动子。在某些实施方案中,所述第一和第二异源启动子可以结合相同的聚合酶,例如但不限于T7依赖于DNA的RNA聚合酶;或者它们可以结合不同的聚合酶,例如但不限于得自痘病毒或噬菌体T3、T7或SP6的依赖于DNA的RNA聚合酶。在某些实施方案中,psRNAV是甲病毒属。

在一个示例性的实施方案中,所述重组多核苷酸具有一个与甲病毒衣壳蛋白编码序列操作性连接的噬菌体T7启动子和一个与甲病毒复制子编码序列操作性连接的第二个T7启动子。在某些实施方案中,所述甲病毒衣壳和甲病毒复制子来源于委内瑞拉马脑炎病毒。

在其它实施方案中,所述重组多核苷酸具有包括与依赖于DNA的RNA聚合酶编码序列操作性连接的第一异源启动子的第一部分。所述第二部分包括与第二异源启动子操作性连接的复制子样psRNAV辅助RNA编码序列。因此,当依赖于DNA的RNA聚合酶与所述第二异源启动子结合时,复制子样psRNAV辅助RNA被转录。当所述复制子样辅助RNA暴露于psRNAV复制复合体时,它通过复制酶复制,产生通过反转录酶转录的“反基因组”链,从而产生亚基因组转录物。然后,所述亚基因组转录物翻译产生或者psRNAV衣壳蛋白或者psRNAV糖蛋白,但不同时产生它们两者。

在这些实施方案中,依赖于DNA的RNA聚合酶编码序列编码诸如来源于噬菌体T3、T7、SP6等的噬菌体聚合酶,而所述复制子样辅助序列包含编码psRNAV衣壳的序列。在这些实施方案中,所述第一异源启动子包含例如痘病毒合成早期/晚期启动子,而所述第二异源启动子与噬菌体依赖于DNA的RNA聚合酶、例如T3、T7或SP6聚合酶结合。

在其它实施方案中,重组多核苷酸具有与噬菌体T7聚合酶编码序列操作性连接的痘苗病毒合成早期/晚期启动子和与包含psRNAV衣壳编码序列的复制子样辅助序列操作性连接的第二异源启动子,所述第二异源启动子与T7依赖于DNA的RNA聚合酶结合。

在另外的实施方案中,本发明的重组多核苷酸具有第一部分和第二部分,所述第一部分包括与第一异源启动子操作性连接、编码复制子样psRNAV辅助RNA的序列;而所述第二部分包含与psRNAV复制子操作性连接的第二异源启动子。psRNAV复制子包括与至少一种外源多肽编码序列操作性连接的psRNAV亚基因组启动子。在这些实施方案中,所述第一和第二异源启动子可以相同或者它们可以不同。在某些实施方案中,所述复制子样辅助序列包含编码psRNAV糖蛋白的序列。在某些实施方案中,所述第一和第二异源启动子结合噬菌体依赖于DNA的RNA聚合酶,例如但不限于T3、T7或SP6聚合酶。在某些实施方案中,psRNAV是一种甲病毒。

在一个示例性的实施方案中,所述重组多核苷酸的第一和第二启动子与T7依赖于DNA的RNA聚合酶结合,而所述复制子样辅助序列包含编码甲病毒糖蛋白、例如但不限于委内瑞拉马脑炎病毒糖蛋白的序列。

一旦上述重组多核苷酸已经产生,则它们可以用来构建重组载体,例如但不限于克隆载体或表达载体。示例性的克隆载体或表达载体包括细菌质粒、噬菌粒、重组病毒、酵母载体等。克隆载体的优点可以包括易于克隆和体外操作。表达载体的优点可以包括增强的基因表达、广宿主范围感染性、在限制性细胞系中有限生长或不生长、可感染哺乳动物宿主细胞、控制宿主细胞抗病毒反应、对实验室人员无致病性。优选的重组质粒或病毒载体包括痘病毒、腺病毒、疱疹病毒、脊髓灰质炎病毒、流感病毒和逆转录病毒。一种特别优选的重组痘病毒载体是经修饰的痘苗病毒Ankara(MVA)。

在某些实施方案中,由于生物安全性原因,本发明的包装系统可以包含三种重组载体,每种编码一种不同的psRNAV结构多肽。在某些实施方案中,所述三种重组载体包括但不限于第一重组载体、第二重组载体和第三重组载体,所述第一重组载体包含衣壳编码序列,所述第二重组载体包含E1糖蛋白编码序列,而所述第三重组载体包含E2糖蛋白编码序列。

技术人员将会知道,本发明包装系统中所用的重组病毒载体可以但不一定来源于相同的重组病毒。例如,对于某些病毒系统而言,被第一种病毒感染可以使得受感染细胞变成难以被来自相同病毒系统的另一种病毒超感染。因此,在某些实施方案中,可能优选应用其中第一重组病毒来源于与第二重组病毒不同的病毒系统的包装系统。例如但不限于包含痘病毒衍生载体和腺病毒衍生载体的包装系统。

另外,可以使用双启动子插/表达载体。例如,对痘苗病毒合成早期/晚期启动子以反向构型工程改造,使得可以将两种基因同时插入到痘病毒的相同位点中(50)。也可以用这种相同类型的载体在所述MVA包装系统中插入多种表达盒。

在某些实施方案中,重组MVA包含插入到MVA缺失II或III中的一种或多种本发明重组多核苷酸(参见图2)。在其它实施方案中,重组体包含插入到MVA血凝素基因(42)、胸苷激酶基因(52)或插入到MVA基因组的其它非必需区中的一种或多种本发明重组多核苷酸。插入到其它MVA缺失位点也在本发明范围内。例如,已经对6个MVA缺失作图,包括缺失I,一种HindIII C限制片段内的2.9千碱基对(kbp)缺失;缺失II,一种HindIII N限制片段内的5.0kbp缺失;缺失III,一种HindIII A限制片段内的3.5kbp缺失;缺失IV,一种HindIII B限制片段内的10.2kbp缺失;缺失V,一种HindIII C片段内的4.7kbp缺失;和缺失VI,一种HindIII A限制片段内的3.8kbp缺失(参见图2HindIII限制图谱)。MVA缺失作图的描述其中可以见于参考文献(41)、(49)和(51)。

也提供复制子包装系统。本文公开的新型包装系统包含至少两种本发明重组载体。本发明的包装系统可以是诱导型或组成型的。一种示例性的psRNAV复制子包装系统包含两种重组MVA,其中每种都具有第一和第二部分。第一个示例性的重组MVA具有第一部分,所述第一部分包含与噬菌体T7依赖于DNA的RNA聚合酶编码序列操作性连接的痘苗病毒合成早期/晚期启动子;和第二部分,所述第二部分包含与插入到缺失III中的至少一种甲病毒结构蛋白编码序列操作性连接的、与T7依赖于DNA的RNA聚合酶结合的第二异源启动子,其中所述序列编码VEE糖蛋白(参见图2)。第二个示例性的重组MVA具有包含与插入到缺失III中的委内瑞拉马脑炎病毒衣壳蛋白编码序列操作性连接的噬菌体T7启动子的第一部分和包含与插入到缺失II中的VEE复制子编码序列操作性连接的T7启动子的第二部分(参见图2)。

也提供产生感染性复制子颗粒的方法。按照某些实施方案,用包含一种本发明新型复制子颗粒包装系统的多种重组病毒共感染细胞。在一个示例性的实施方案中,用包含一种本发明新型复制子颗粒包装系统的一种或多种MVA重组病毒共感染细胞。在另一个示例性的实施方案中,提供扩增感染性复制子颗粒的方法。用psRNAV复制子颗粒和表达psRNAV衣壳和糖蛋白的MVA重组体共感染细胞。在这二个示例性的实施方案中,在适于产生复制子颗粒的条件孵育所述共感染细胞。一旦产生,则获得所述复制子颗粒。

提供测定复制子颗粒滴度的方法。按照某些实施方案,用MVA重组体感染细胞,从而将合适的报道基因传递至细胞中。当用复制子颗粒共感染细胞时,所述报道基因被激活,然后可以对细胞进行检测。可以与该系统一起使用的报道基因的实例包括绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白、β-半乳糖苷酶、β-葡糖醛酸糖苷酶、氯霉素乙酰转移酶和荧光素酶。

本发明的复制子颗粒可以用于待给予宿主的免疫原性组合物或药用制剂中。这类组合物和制剂可以进一步包含合适的生理可接受的载体、佐剂、稀释剂、赋形剂、免疫刺激化合物等。可以采用任何有效方法给予这些组合物和制剂。示例性的给药方法包括静脉内注射、肌内注射或皮内注射、鼻内滴注、口服、局部应用于皮肤或粘膜表面等。

在某些实施方案中,提供在哺乳动物或人类宿主体内诱导免疫应答的方法。这类方法包括给予所述宿主免疫有效量的一种本发明免疫原性组合物,以在所述宿主体内诱导免疫应答。在某些实施方案中,提供在哺乳动物或人类宿主体内产生预防效应、治疗效应或缓解效应的方法。这些方法包括给予所述宿主有效量的一种本发明药用制剂,以产生预防效应、治疗效应或缓解效应。

本发明范围内也包括通过所述重组多肽表达的外源蛋白、重组载体(包括重组病毒)、本发明复制子颗粒包装系统和采用本发明方法获得的复制子颗粒。

附图简述

图1.显示甲病毒复制循环步骤的示意图。在受感染细胞内,甲病毒基因组5′的三分之二从单一翻译起始位点翻译,产生4种甲病毒非结构蛋白(nsP)(步骤1)。nsP是合成互补(-)RNA链(步骤2)所需的,所述互补RNA链用作复制基因组RNA和亚基因组RNA的转录(步骤3)的模板。亚基因组RNA翻译产生与基因组RNA上、而不在亚基因组RNA上的包装信号相互作用的结构蛋白(sP)(步骤4),以装配感染性甲病毒颗粒(步骤5)。互补(-)RNA链上所示的水平箭头表示甲病毒亚基因组启动子。(摘自Schlessinger,S.1999.ASM News 65:688-95中的图)。

图2.MVGKT7表达载体的图解说明。显示病毒的HindIII限制图谱。噬菌体T7基因-1位于HindIII J片段内。也显示可用于重组多核苷酸和外源基因插入的MVA缺失II和III。其它缺失(例如I、IV、V和VI)已经相对于这些HindIII限制位点作图并且也可以是有用的外源基因插入位点。

图3.一种示例性的甲病毒复制子颗粒组成型包装系统的图解说明。显示叠加在CMVA1和CMVA2上的HindIII限制图谱。图3和图4中所用的缩写-PT7:噬菌体T7启动子;P7.5:痘苗病毒7.5K启动子;PS-E/L:痘苗病毒合成早期/晚期启动子;P11K:痘苗病毒11K启动子;PG8R:G8R启动子;capORF:衣壳可读框;gP ORF:糖蛋白可读框;DHgP:糖蛋白缺陷型辅助RNA编码序列;DHcap:衣壳缺陷型辅助RNA编码序列。

图4.一种示例性的甲病毒复制子颗粒诱导型包装系统的图解说明。缩写与以上图3简述中的缩写相同。

图5.说明质粒pGK16.2产生的示意图谱。点画箭头代表痘苗病毒合成早期/晚期启动子(PE/L)和痘苗病毒7.5K启动子(P7.5K)。TK-L和TK-R表示与痘苗病毒胸苷激酶(TK)基因座有同源性的区域。

图6.说明质粒pDF17、pDF30和pDF33产生的示意图谱。点画箭头代表痘苗病毒合成早期/晚期启动子(PE/L)、痘苗病毒7.5K启动子(P7.5K)和痘苗病毒11K启动子(P11K)。在该图中,MF-1和MF-2表示与称为MVA“缺失III”区有同源性的区域。

图7.说明质粒pGK53和pGK51产生的示意图谱。点画箭头代表痘苗病毒合成早期/晚期启动子(PE/L)、痘苗病毒7.5K启动子(P7.5K),痘苗病毒11K启动子(P11K)、噬菌体T7启动子(P-T7)和甲病毒亚基因组启动子(P-26S)。ΔnsP是nsP表达盒内大的缺失。

图8.在示例性基于痘病毒的甲病毒复制子颗粒包装系统中所用的重组MVA基因组的图解说明。(A)诱导型系统。(B)组成型系统。右边显示重组MVA的名称。所用的具体启动子以点画箭头表示。VEE复制序列以黑色框表示。甲病毒亚基因组启动子以弯曲黑色箭头表示。VEE非结构蛋白基因以复制酶表示。GFP,绿色荧光蛋白;gus,β-葡糖醛酸糖苷酶基因;T7基因-1,T7 RNA聚合酶基因;lacZ,β-半乳糖苷酶基因;gP,E3/E2/6K/E1糖蛋白;cap,衣壳;DH,缺陷型辅助;ORF,可读框。该图并未按比例绘制。

图9.说明质粒pDF13、pDF49、pDF51和pGK61产生的示意图谱。点画箭头代表H5R启动子(P-H5R)和G8R启动子(P-G8R)。在该图中,MF-1和MF-2表示与称为MVA“缺失II”区有同源性的区域。

图10.说明质粒pVR3和pVRGFP产生的示意图谱。点画箭头代表噬菌体T7启动子(P-T7)和甲病毒亚基因组启动子(P-26S)。

图11.说明质粒pGK63产生的示意图谱。点画箭头代表噬菌体T7启动子(P-T7)、G8R启动子(P-G8R)和甲病毒亚基因组启动子(P-26S)。

图12.说明质粒pGK64和pGK65产生的示意图谱。点画箭头代表噬菌体T7启动子(P-T7)、痘苗病毒合成早期/晚期(P-E/L)和11K(P11K)启动子和甲病毒亚基因组启动子(P-26S)。

图13.VEE抑制MVA晚期基因表达。以相当于10个噬斑形成单位(PFU)的单独重组MVA或者10个感染单位(IU)的VRP/GFP或者它们两者的感染复数(MOI)感染BHK-21细胞,并且在感染后24小时(hpi)收获。向所示细胞中加入胞嘧啶β-D阿拉伯糖苷酶或AraC(44μg/ml)。制备裂解液并分析β-半乳糖苷酶活性(OD490)。

图14.用一种示例性基于MVA的诱导型VRP-包装系统的VRP包装。用MVA/VEEGFP/DHgP(IMVA2)和MVGKT7/DHcap(IMVA1)以指定MOI共感染约1×106幼仓鼠肾(BHK)-21细胞,或者所述细胞用复制子-GFP RNA、衣壳和糖蛋白DH RNA共转染。测定受感染细胞和转染细胞培养基中的VRP/GFP滴度并且以每个35mm平皿总VRP/GFP的IU作图。条带上的数字表示每个细胞所产生的VRP/GFP平均数。

图15.用一种示例性基于MVA的组成型VRP-包装系统的VRP包装。用MVA/VEEGFP/cap和MVGKT7/gP以指定MOI共感染BHK-21细胞或者如图5中所示进行共转染。测定得自受感染细胞和转染细胞的培养基中的VRP/GFP滴度。将滴度以每1×106细胞总VRP/GFP IU作图。条带上的数字表示每个细胞VRP/GFP收率平均数。

图16.说明通过示例性基于MVA的VRP-包装系统的结构蛋白表达。用或者MVGKT7/gP和/或MVA/VEEGFP/cap(组成型系统)或者MVA/VEEGFP/DHgP和/或MVGKT7/DHcap(诱导型系统)以MOI等于5PFU每种病毒/细胞感染约1×106BHK-21细胞。或者,将BHK-21细胞与复制子-GFP RNA以及衣壳和糖蛋白DH RNA一起进行电穿孔。(A)在24小时制备细胞裂解液并采用VEE-特异性抗血清通过免疫印迹法进行分析。分子量标记示于左边。衣壳、E2/E1的预期免疫反应性蛋白条带示于右边。分子量标记大小示于最左边。MWM,分子量标记;Cap,受MVA/VEEGFP/cap感染的;gP,受MVGKT7/gP感染的;RNA,用断裂-辅助RNA电穿孔的;DHCap,受MVGKT7/DHCap感染的;DHgP,受MVA/VEEGFP/DHgP感染的。(B)收获受感染细胞和转染细胞培养基,测定原初BHK-21细胞滴度。测定每个35mm平皿的总VRP/GFP IU。条带上的数字表示每个细胞所产生的VRP平均数。

图17.MVA生长受限的细胞系上的VRP包装。用MVA/VEEGFP/cap和MVGKT7/gP以10PFU每种病毒/细胞共感染约2.5×106指定细胞系。24hpi时测定受感染细胞培养基中的VRP/GFP滴度并以每个T-25瓶所产生的总IU作图。条带上的数字表示每个细胞所产生的VRP平均数。

图18.描绘了载体pLW17核苷酸序列(得自B.Moss),参见实施例1B。(SEQ ID NO:3)

图19.显示构建MVA重组体所用的质粒转移载体p2104的图解说明,所述MVA重组体用来将一种报道基因传递至细胞中。

图20.显示在将p2104转移载体重组到缺失III中后的MVA重组体IMVA3的图解说明。

图21.用示意图描绘了通用复制子滴度测定系统。

图22.描绘了甲病毒科的两个成员(甲病毒和风疹病毒)和黄病毒科中一个代表性病毒的基因组。非结构基因以阴影框表示,而结构基因以点画框表示。

图23.采用基于IMVA3的GFP指示系统测定VRPgD滴度。用IMVA3指示病毒(图面A和C)和/或VRPgD复制子颗粒(图面B和C)感染VERO细胞融合培养物。在感染后24小时,用UV荧光显微镜观察细胞。

优选实施方案的详细描述

本文所用的小节标题仅仅是为了有条理,而不能解释为限制所述主题。在本申请中所引用的所有参考文献、包括文章、书藉、专利和专利申请都通过引用结合到本文中用于任何目的。定义

本文所用的术语“正链RNA病毒”或“psRNAV”是指以正链RNA存在的RNA病毒。正链RNA病毒包括但不限于甲病毒,包括但不限于罗斯河病毒、西门利启森林病毒、新培斯病毒和委内瑞拉马脑炎病毒;黄病毒,包括但不限于登革病毒;丙型肝炎病毒(hepacivirus),包括但不限于丙型肝炎病毒;冠状病毒科,包括但不限于冠状病毒;和风疹病毒,包括但不限于风疹病毒。

术语“糖蛋白”包括甲病毒糖蛋白以及其它正链RNA病毒的功能上同源的蛋白。术语“糖蛋白”当用于指甲病毒属蛋白或基因时,均可以以广义使用,包括甲病毒E1糖蛋白、甲病毒E2糖蛋白、甲病毒E2/E1糖蛋白前体和/或甲病毒多聚蛋白(包含E3/E2/6K/E1)或它们的组合。

术语“复制子”是指具有插入到psRNAV基因组中以取代编码psRNAV结构蛋白的序列的至少一种外源基因的复制缺陷型psRNAV。所述至少一种外源基因与psRNAV亚基因组启动子操作性连接,因此psRNAV亚基因组启动子在转录水平上对其进行调节。在某些实施方案中,所插入的外源基因只取代某些psRNAV结构蛋白的编码序列。因此,所述复制子既编码外源基因,也编码某些psRNAV结构蛋白、而不是全部psRNAV结构蛋白。

术语“缺陷型辅助RNA”,也称为“DHRNA”,描述已经设计用来含有复制所必需的顺式作用序列和用于转录一种或多种结构蛋白基因的亚基因组启动子的RNA。通过提供反式psRNAV复制酶/转录酶,所述结构蛋白的表达得以实现。

术语“外源基因”,当在本文中使用时,是指已经从其天然遗传环境取出且置于不同的遗传环境中的核酸序列。例如但不限于与甲病毒亚基因组启动子操作性连接的人淀粉样肽编码基因,或者与委内瑞拉马脑炎病毒亚基因组启动子操作性连接的新培斯病毒糖蛋白基因。本文所用的术语“外源多肽”是指由外源基因编码的多肽。

本文所用的术语“免疫原性组合物”是指刺激或增强体液免疫应答或细胞免疫应答的一种或多种物质。这类免疫原性组合物的实例包括但不限于刺激或增强免疫应答的抗原、T细胞表位、肽或核苷酸。

术语“操作性连接”是指启动子和编码序列的组合,其中启动子在转录水平上调节编码序列的表达。本文所用的术语“异源启动子”是指这样一种启动子,其中所述启动子所操作性连接的编码序列不是与其天然连接的编码序列。示例性的异源启动子可以是原核启动子、真核启动子或病毒启动子,包括但不限于痘病毒启动子,包括痘苗病毒合成早期/晚期启动子、噬菌体T7、T3和SP6启动子、巨细胞病毒(CMV)启动子、劳氏肉瘤病毒(Rous sarcoma virus)(RSV)启动子、MMTV启动子、鼠白血病病毒(Murine leukemia virus)启动子、哺乳动物polI启动子、哺乳动物pol II启动子和哺乳动物pol III启动子。示例性的异源启动子也包括诱导型启动子,例如雌激素效应启动子、四环素效应启动子、金属硫蛋白启动子、钙效应启动子和lac启动子。在某些实施方案中,操作性连接的异源启动子是与噬菌体编码序列操作性连接的痘苗病毒启动子。某些实施方案提供与甲病毒编码序列操作性连接的噬菌体启动子。

本文所用的术语“药用制剂”是指当以有效量给宿主提供时在所述宿主体内产生预防效应、治疗效应或缓解效应的一种或多种物质。药用制剂可以刺激或不刺激宿主体内免疫应答。这类药用制剂的实例包括但不限于编码胰岛素、生长激素、单核因子、细胞因子、病毒因子或基因治疗所需的其它基因的甲病毒复制子颗粒。

术语“聚合酶”是指可以以模板依赖性方式从核苷酸合成核酸聚合物的酶。所产生的核酸聚合物与所述模板互补。合成RNA聚合物的聚合酶称为RNA聚合酶,而合成DNA聚合物的聚合酶称为DNA聚合酶。另外,聚合酶根据它们是利用DNA模板还是RNA模板起作用进行分类。因此,例如依赖于DNA的RNA聚合酶利用DNA模板合成互补RNA拷贝。

本文所用的术语“多肽”是指通过至少一个肽键连接在一起的两个或两个以上氨基酸。在广义上,所用的术语包括肽、寡肽和蛋白。

术语“复制子样辅助RNA”是指转录产生psRNAV复制复合体可以作用于其上的辅助RNA模板的序列。psRNAV复制复合体中的一个元件psRNAV复制酶利用辅助RNA模板合成单链、负义“反基因组”。该反基因组作为所述复制复合体中的另一元件psRNAV转录酶的模板起作用。转录酶合成mRNA,所述mRNA当被翻译时,产生或者psRNAV衣壳蛋白或者psRNAV糖蛋白,但不产生它们两者。

术语“合成早期/晚期启动子”是指可用作转录启动子并且已经基于详细的启动子家族诱变对表达进行遗传最优化的核苷酸序列(例如痘苗病毒早期或晚期启动子)。

术语“转录”是指其中RNA聚合酶合成DNA或RNA模板的互补RNA拷贝的过程。

术语“翻译”是指其中翻译复合体基于RNA模板、一般是mRNA合成蛋白质的过程。本发明示例性的实施方案

本发明的包装系统基于用带有psRNAV复制子和辅助RNA或基因的两种重组载体共感染。这些系统不需要体外合成RNA分子的转染。为了更加清楚地说明本发明,应用噬菌体T7依赖于DNA的RNA聚合酶、经修饰的痘苗病毒(MVA)载体和VEE,产生示例性基于重组载体的甲病毒复制子颗粒包装系统。提供诱导型和组成型甲病毒复制子颗粒包装系统两者。

两种类型的系统之间的一个区别在于辅助功能RNA的结构。在某些示例性的诱导型系统中,当在诱导物VEE复制酶存在下复制和转录时,缺陷型辅助(DH)RNA通过T7依赖于DNA的RNA聚合酶转录,随后表达。在某些示例性的组成型系统中,通过感染过程,即使在VEE复制酶不存在的情况下,辅助功能物也可通过痘苗病毒依赖于DNA的RNA聚合酶转录为mRNA,随后表达。所述组成型包装系统也可工程改造,以表达在噬菌体启动子调节下的结构蛋白基因。

当用所述包装系统的两种重组载体共感染细胞时,产生复制子颗粒。所产生的复制子颗粒能够启动一轮感染。然而,所述复制子颗粒不能形成活病毒,因为只有含有外源基因的复制子基因组被包装。这是由于产生表达含有包装信号的复制子和缺乏包装信号的辅助RNA的包装系统所致。

因为psRNAV复制子不是位于与T7依赖于DNA的RNA聚合酶基因所位于的相同重组病毒载体上,所以所述复制子不被表达,除非在所述细胞内存在含有聚合酶基因的第二种重组病毒载体。此外,只有所述复制子含有包装信号,而辅助RNA无包装信号。因此,只有所表达的复制子被包装产生感染性颗粒。

技术人员将会知道,从除噬菌体T7以外来源获得的依赖于DNA的RNA聚合酶在本发明范围内,除MVA和VEE以外的痘病毒和正链RNA病毒也在本发明范围内一样。此外,除给定聚合酶的共有核苷酸序列或氨基酸序列外,在本发明中考虑了痘病毒或psRNAV、得自变异体的序列例如另外的临床分离物或体外产生的变异病毒。另外,由于核苷酸密码的简并性,因此许多不同的核苷酸序列将编码相同的氨基酸序列。因此,简并核苷酸序列在本发明范围内。

更加详细地讲,所述组成型包装系统包含两种重组痘病毒载体,为了说明,它们是组成型MVA载体1(CMVA1,也称为MVGKT7/gp)和组成型MVA载体2(CMVA2,也称为MVA/VEEGFP/cap)(参见图3)。CMVA1包含噬菌体T7基因-1,所述噬菌体T7基因-1编码依赖于DNA的RNA聚合酶、与痘苗病毒合成早期/晚期启动子操作性连接、插入到胸苷激酶基因座中。CMVA1还包含与痘苗病毒合成早期/晚期启动子操作性连接、插入到MVA缺失III中的VEE E2/E1可读框(参见图3)。CMVA2包含与痘苗病毒合成早期/晚期启动子操作性连接、插入到MVA缺失III中的VEE衣壳可读框。CMVA2还包含含nsP和至少一种外源基因、与T7启动子操作性连接、插入到MVA缺失II中的甲病毒复制子(参见图3)。用CMVA1和CMVA2两者感染的细胞产生T7聚合酶,T7聚合酶转录出全长复制子。所述衣壳和E2/E1mRNA直接从mRNA翻译,产生甲病毒结构蛋白,进而对所述复制子包衣壳,从而产生甲病毒复制子颗粒。值得注意的是,辅助功能物在组成型包装系统中被转录,即使无所述甲病毒属复制酶时情况也是如此。

一种说明性的诱导型包装系统也包含两种重组痘病毒载体:诱导型MVA载体1(IMVA1,也称为MVGKT7/DHcap)和诱导型MVA载体2(IMVA2,也称为MVA/VEEGFP/DHgP)(参见图4),与CMVA1一样,IMVA1包含噬菌体T7基因-1,所述噬菌体T7基因-1编码依赖于DNA的RNA聚合酶、与痘苗病毒合成早期/晚期启动子操作性连接、插入到胸苷激酶基因座中。与CMVA1相反,IMVA1还包含与T7启动子操作性连接、插入到MVA缺失III中的复制子样衣壳辅助RNA。IMVA2包含与T7启动子操作性连接、插入到MVA缺失III中的复制子样E2/E1辅助RNA(参见图4)。IMVA2还包含与T7启动子操作性连接、插入到MVA缺失II中的VEE复制子(参见图4)。所述诱导型包装系统的所有复制子样辅助RNA必须通过甲病毒属复制酶复制,然后它们被翻译成辅助蛋白。因此,用IMVA1和IMVA2感染的细胞只有当甲病毒属复制酶存在时才产生甲病毒复制子颗粒。

一旦产生了psRNAV复制子颗粒,则它们可以通过用所述复制子颗粒和表达psRNAV衣壳和糖蛋白的MVA重组体共感染细胞而扩增。在该系统中,psRNAV复制子能够复制,但它缺乏形成新的复制子颗粒所需的结构基因。当与表达结构蛋白的MVA重组体共感染时,带有psRNAV复制子的复制子颗粒得以装配。在某些实施方案中,所述MVA重组体表达在异源启动子控制下的各种结构蛋白。在某些实施方案中,所述启动子是痘苗病毒合成早期/晚期启动子或另一种合适的痘病毒启动子、噬菌体T7、T3或SP6启动子或另一种可以指导在细胞质内转录的启动子。在某些实施方案中,表达噬菌体T7、T3或SP6的载体以反式提供,和/或在宿主细胞内稳定表达。技术人员会立刻认识到,哪些启动子适合于本文所述扩增系统。

技术人员将会知道,按照所公开的实施例并且仅仅应用常规技术,可在本发明的重组载体和复制子包装系统中互换使用替代的聚合酶、痘病毒载体、正链RNA病毒、psRNAV结构或非结构蛋白序列、复制子和复制子样辅助RNA,而无需过多实验。这类重组载体和包装系统在本发明范围内。

本发明的重组多核苷酸也包括编码各种所述聚合酶和病毒序列的多肽类似物或衍生物的核酸序列,所述类似物或衍生物与天然存在的形式不同,例如含有小于天然存在形式的所有氨基酸的缺失类似物、其中一个或多个氨基酸被其它残基取代的取代类似物和添加一个或多个氨基酸到天然存在的序列中的添加类似物。这些各种类似物共享它们所来源的聚合酶或病毒序列或多肽的某些或全部生物学特性。例如但不限于适当时催化DNA模板指导的RNA聚合反应、转录调节操作性连接的编码序列、形成psRNAV复制复合体、转录psRNAV“反基因组”、形成psRNAV颗粒等。本领域技术人员将能够设计出合适的类似物,并且可应用体外测定系统测试这些类似物的生物活性。

在某些优选的实施方案中,可以进行保守氨基酸取代。保守氨基酸取代包括但不限于其中给定氨基酸可以例如被具有相似物理化学或生物化学特性的残基取代的改变。这类保守取代的实例包括但不限于一个脂族残基被另一脂族残基取代,例如Ile、Val、Leu或Ala可相互取代;一个极性残基被另一极性残基取代,例如在Lys和Arg、Glu和Asp或者Gln和Asn之间的取代;或者一个芳族残基被另一芳族残基取代,例如Phe、Trp或Tyr可相互取代。例如涉及具有相似疏水性特征整个区的取代的其它保守取代是众所周知的。参见Biochemistry:AProblems Approach,(Wood,W.B.,Wilson,J.H.,Benbow,R.M.和Hood,L.E.编著)Benjamin/Cummings Publishing Co.,Inc.,Menlo Park,CA(1981),第14-15页。

在某些实施方案中,所述类似物与天然存在的共有序列有70%、75%、80%、85%、90%、95%或99%相同或同源。正如本领域所知道的,同一性百分率涉及氨基酸序列或核酸序列之间的相关性。人们可用通过特定方法解决的引入空位的序列比对(gap alignment)测定两个或两个以上序列之间的相同匹配百分率。可以通过目测检测和/或数学计算测定所述同一性百分率。或者,运用Devereux等介绍的GAP计算机程序(version 6.0)(Nucl.Acids Res.12:387,1984)(可得自Universityof Wisconsin Genetics Computer Group(UWGCG)),通过比较序列信息可以测定两种核酸序列的同一性百分率。GAP程序的优选缺省参数包括:(1)用于核苷酸的单式比较矩阵(unitary comparison matrix)(包括同一性数值为1,而非同一性数值为0)以及Gribskov和Burgess(Nucl.Acids Res.14:6745,1986)的加权比较矩阵(weighted comparisonmatrix),如下述文献所述:Schwartz和Dayhoff编著,Atlas of ProteinSequence and Structure,National Biomedical Reseaarch Foundation,第353-358页,1979;(2)每一空位罚分(penalty)为3.0,而每一空位中每一符号的额外罚分为0.10;和(3)末端空位无罚分。也可以使用序列比较领域技术人员所用的其它程序。

也提供获得感染性复制子颗粒的方法。按照某些方法,用构成本发明新型包装系统的重组病毒共感染哺乳动物细胞或昆虫细胞。可以使用食品及药品管理局批准用于疫苗生产的任何细胞系。显示限制MVA生长的其它细胞系也可能是用于复制子颗粒生产的优良候选物,包括但不限于其中在参考文献(43)、(44)和(46)中描述的CHO、CHL、CV-1、293、HeLa、SW 839、PK(15)、MDCK、RK13、RAB-9、SIRC、Balb3t3、FS-2、MIB、SK 29 MEL 1、LC 5、85 HG 66、U 138、C 8166、HUT 78、SY 9287和Vero细胞。优选的哺乳动物细胞包括BHK-21细胞和FRhL细胞(分别是ATCC No.CCL-10和CL-160)。

在适于产生复制子颗粒的条件下孵育所述共感染的细胞。技术人员将会认识到,合适条件可以例如因不同的细胞系而变,或者因不同的包装系统而变。技术人员将会知道或者可以容易地确定用于产生复制子颗粒的适宜条件。这样的适宜条件可以包括例如最适孵育温度和时间、CO2浓度、生长培养基、补充物、血清来源和浓度、DNA复制抑制剂例如AraC等。

在本发明的某些实施方案中,可以采用质粒替代病毒载体,将含有psRNAV结构基因的载体和复制子表达载体传递至细胞中。采用本领域众所周知的转染技术将所述载体传递至所述细胞中。转染法描述于Sambrook等,Molecular Cloning(1989)(38)。psRNAV基因的表达可以由pol I启动子、pol II启动子、噬菌体启动子和/或其它合适的启动子驱动。在某些实施方案中,psRNAV结构基因和复制子处于pol II启动子的控制之下,所述启动子可以是或不是诱导型启动子。在某些实施方案中,psRNAV结构基因和复制子处于噬菌体启动子(例如T7启动子)的控制之下。在该系统中,psRNAV基因的表达依赖于T7聚合酶的表达。T7聚合酶可以由共转染质粒表达,或者可以由宿主细胞稳定地表达。用任一系统,将所述表达质粒共转染到包装细胞系中,然后从细胞培养基中收获所述复制子颗粒。

一旦产生,则采用本领域众所周知的方法获得所述复制子颗粒。示例性的方法包括但不限于离心,包括沉降和等密度离心;层析和沉淀法,例如采用聚乙二醇、NaCl等的选择性沉淀。

也提供用以测定复制子颗粒滴度的方法。在某些实施方案中,使用MVA重组体将报道基因传递至合适的细胞系中。用复制子颗粒共感染细胞可激活所述报道基因,从而可以检测共感染细胞。在一个示例性的实施方案中,制备MVA重组体,使其含有编码绿色荧光蛋白(GFP)的缺陷型VEE RNA。在用复制子颗粒共感染后,VEE复制酶-转录酶复合体复制和转录“VEE样”RNA,从而表达GFP蛋白。然后可以检测GFP,测定复制子颗粒的滴度。合适的报道基因包括但不限于绿色荧光蛋白(GFP)、蓝色荧光蛋白、黄色荧光蛋白、氯霉素乙酰转移酶(CAT)、荧光素酶、β-半乳糖苷酶、β-葡糖醛酸糖苷酶。检测方法包括但不限于荧光显微镜法、化学发光、抗体染色、酶分析和显色染色(colorimetric staining)。

通过本发明方法制备的复制子颗粒可以作为治疗性或预防性免疫原性组合物或者作为药用制剂使用,这至少部分取决于在所述复制子颗粒中所编码的外源多肽。编码至少一种外源多肽的序列可以根据需要而变化。根据特定复制子颗粒的应用,编码至少一种外源多肽的序列可以编码辅因子、细胞因子(例如白介素)、T细胞(包括辅助T细胞、诱导性、细胞毒性T细胞和抑制性T细胞)表位、限制标记、佐剂、得自致病微生物、癌细胞或肿瘤细胞的多肽、变应原、淀粉样肽、蛋白或其它大分子组分。

示例性的致病微生物包括但不限于感染人类或非人类脊椎动物的病毒、细菌、真菌或寄生微生物。

这类病毒的实例包括但不限于人免疫缺陷病毒(HumanImunodeficiency virus)、猴免疫缺陷病毒(Simian Imunodeficiency virus)、呼吸道合胞病毒(Respiratory syncytial virus)、副流感病毒(Parainfluenzavirus)I-III型、单纯疱疹病毒(Herpes simple virus)、人巨细胞病毒(Humancytomegalovirus)、甲型肝炎病毒(Hepatitis A virus)、乙型肝炎病毒(Hepatitis B virus)、丙型肝炎病毒(Hepatitis C virus)、人乳头瘤病毒(Human papillomavirus)、脊髓灰质炎病毒、轮状病毒、杯状病毒、麻疹病毒(Measles virus)、腮腺炎病毒(Mumps virus)、风疹病毒、腺病毒、狂犬病病毒(rabies virs)、犬瘟热病毒(canine distemper virus)、牛瘟病毒(rinderpest virus)、冠状病毒、细小病毒、传染性鼻气管炎病毒(infectiousrhinotracheitis virus)、猫白血病病毒(feline leukemia virus)、猫传染性腹膜炎病毒(feline infectious peritonitis virus)、禽传染性滑液囊病病毒(avian infectious bursal disease virus)、新城疫病毒(Newcastle diseasevirus)、马立克氏病病毒(Marek’s disease virus)、猪呼吸道生殖道综合征病毒(porcine respiratory and reproductive syndrome virus)、马动脉炎病毒(equine arteritis virus)和各种脑炎病毒。

这类细菌的实例包括但不限于流感嗜血菌(Haemophilusinfluenzae)(典型和非典型两者)、睡眠嗜血菌(Haemophilus somnus)、卡他莫拉氏菌(Moraxella catarrhalis)、肺炎链球菌(Streptococcuspneumomae)、酿脓链球菌(Streptococcus pyogenes)、无乳链球菌(Streptococcus agalactiae)、粪链球菌(Streptococcus faecalis)、幽门螺杆菌(Helicobacter pylori)、脑膜炎奈瑟氏球菌(Neisseria meningitides)、淋病奈瑟氏球菌(Neisseria gonorrhoeae)、沙眼衣原体(Chlamydiatrachomatis)、肺炎衣原体(Chlamydia pneumoniae)、鹦鹉热衣原体(Chlamydia psittaci)、百日咳博德特氏菌(Bordetella pertussis)、伤寒沙门氏菌(Salmonella typhi)、鼠伤寒沙门氏菌(Salmonella typhimurium)、猪霍乱沙门氏菌(Salmonella choleraesuis)、大肠杆菌(Escherichiacoli)、志贺氏菌属(Shigella)、霍乱弧菌(Vibrio cholerae)、白喉棒杆菌(Corynebacterium diphtheriae)、结核分枝杆菌(Mycobacteriumtuberculosis)、鸟分枝杆菌(Mycobacterium avium)、胞内复合体分枝杆菌(Mycobacterium intracellulare complex)、奇异变形菌(Proteusmirabilis)、普通变形菌(Proteus vulgaris)、金黄色葡萄球菌(Staphylococcus aureus)、破伤风梭菌(Clostridium tetani)、问号钩端螺旋体(Leptospira interrogans)、布氏疏螺旋体(Borrelia burgdorferi)、溶血巴斯德氏菌(Pasteurella haemolytica)、多杀巴斯德氏菌(Pasteurellamultocida)、胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae)和鸡败血支原体(Mycoplasma gallisepticum)。

这类真菌的实例包括但不限于曲霉属(Aspergillis)、芽生菌属(Blastomyces)、念珠菌属(Candida)、球孢子菌属(Coccidiodes)、隐球菌属(Cryptococcus)和组织胞浆菌属(Histoplasma)。这类寄生虫的实例包括但不限于大型利什曼原虫(Leishmania major)、蛔虫属(Ascaris)、鞭虫属(Trichuris)、贾第鞭毛虫属(Giardia)、血吸虫属(Schistosoma)、隐孢子虫属(Cryptosporidium)、毛滴虫属(Trichomonas)、鼠弓形体(Toxoplasma gondii)和卡氏肺囊虫(Pneumocystis carinii)。

得自癌细胞或肿瘤细胞的示例性多肽包括但不限于前列腺特异性抗原、癌胚抗原、MUC-1、Her2、CA-125和MAGE-3。示例性的变应原包括但不限于在美国专利第5,830,877号和公布的国际专利申请号WO99/51259中介绍的变应原,包括花粉、昆虫毒物、动物头皮屑、真菌孢子和药物(例如青霉素)。这样的组分干扰IgE抗体的产生,IgE抗体是一种已知的变态反应病因。

在一个实施方案中,所述外源多肽是已表明与各种诸如早老性痴呆、淀粉样变性或淀粉样蛋白生成性疾病(amyloidogenic disease)的疾病相关的淀粉样肽蛋白(APP)。β-淀粉样肽(也称为A-β肽)是APP的一种42个氨基酸片段,它通过β和γ分泌酶加工APP而产生,并且具有以下序列:

Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln LysLeu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly LeuMet Val Gly Gly Val Val Ile Ala(SEQ ID NO:1)。

在某些患者中,淀粉状蛋白沉积物为聚集的A-β肽形式。令人惊奇的是,现在已经发现给予分离的A-β肽在脊椎动物宿主体内可诱导针对淀粉状蛋白沉积物的A-β肽组分的免疫应答(参见公布的国际专利申请号WO99/27944)。这样的A-β肽也与不相关的部分连接。因此,本发明的异源核苷酸序列包括所述A-β肽以及A-β肽的片段和抗A-β肽或其片段的抗体的表达。一种这样的A-β肽片段是具有以下序列的28个氨基酸肽(依照在美国专利4,666,829中公开的序列):

Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln LysLeu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys(SEQ ID NO:2)。

某些实施方案的外源多肽也可以包括以单一转录单位表达的序列。然而,也可以包括额外的单顺反子转录单位或多顺反子转录单位。应用额外单顺反子转录单位和多顺反子转录单位应该允许插入更多遗传信息。当例如包括一个多顺反子转录单位时,所述序列可以还包含一个或多个核糖体进入位点。另一方面,所述外源序列可以编码一种多聚蛋白和足够数目的蛋白酶,该蛋白酶切割所述多聚蛋白,产生所述多聚蛋白的单个多肽。

本领域技术人员将会容易地认识到,本发明的复制子颗粒可以单独使用或者与药物、抗原、免疫药或佐剂一起使用,作为预防或缓解疾病的疫苗。这些活性剂可以通过常规方法即通过使用稀释剂或药学上可接受的载体配制和给药。

因此,在本发明的其它实施方案中,所述复制子颗粒可以用于免疫原性组合物中,所述免疫原性组合物包含(i)至少一种复制子颗粒和(ii)至少一种药学上可接受的缓冲剂或稀释剂、佐剂或载体。这些组合物最好作为免疫原性组合物在预防和/或缓解例如但不限于传染性疾病、癌症和其它恶性病症、变态反应、自身免疫病等方面具有治疗应用和预防应用。在这样的应用中,给予免疫有效量的至少一种本发明复制子颗粒引起在所述疾病、反应、病症或恶性疾病进程方面显著降低。

合适的药学上可接受的载体和/或稀释剂包括任何和所有常规溶剂、分散介质、填充剂、固态载体、水溶液、包衣剂、抗细菌剂和抗真菌剂、等渗剂和吸收延迟剂等。术语“药学上可接受的载体”是指在给予所述载体的患者体内不会引起变态反应或其它不当效应的载体。合适的药学上可接受的载体包括例如水、盐水、磷酸缓冲盐溶液、葡萄糖、甘油、乙醇等中的一种或多种以及它们的组合。药学上可接受的载体还可以包含少量的辅助物质例如润湿剂或乳化剂、防腐剂或缓冲剂,它们可以增加所述组合物的半寿期或有效性。药用活性物质的这类介质和试剂的应用是本领域众所周知的。除在任何常规介质或试剂与所述有效成分不相容的情况下以外,考虑了它们在本发明的免疫原性组合物中的应用。

给予这样的免疫原性药用制剂可以通过任何常规有效形式,例如鼻内、胃肠外(例如皮下、肌内或静脉内注射)、口服或局部应用于粘膜表面例如鼻内、口腔、眼睛、肺、阴道或直肠表面,例如通过气雾剂喷雾。

口服制剂包括诸如药物级的甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等之类的常用赋形剂。

本发明的免疫原性组合物或药用制剂可以包括佐剂,包括但不限于氢氧化铝、磷酸铝、StimulonTMQS-21(Aquila Biopharmaceuticals,Inc.,Framingham,MA)、MPLTM(3-O-脱乙酰化单磷脂酰脂质A;Corixa,Hamilton,MT)、合成佐剂RC-529(一种氨基烷基葡糖胺磷酸酯衍生物;Corixa Corp.,Seattle,WA)、IL-12(Genetics Institute,Cambridge,MA)、GM-CSF(Immunex Corp.,Seattle,WA)、N-乙酰-胞壁酰-L-苏氨酰-D-异谷氨酰胺(thr-MDP)、N-乙酰-正-胞壁酰-L-丙氨酰-D-异谷氨酰胺(CGP11637,称为nor-MDP)、N-乙酰-胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷-酰氧基)-乙胺(CGP 19835A,称为MTP-PE)和霍乱毒素。可以使用的其它佐剂是霍乱毒素的无毒性衍生物、与野生型霍乱毒素相比毒性降低的全毒素,包括其A亚单位(例如,其中第29位氨基酸谷氨酸被另一氨基酸取代,按照公布的国际专利申请号WO00/18434,该谷氨酸最好是被组氨酸取代)和/或至少一种外源多肽与霍乱毒素或其B亚单位霍乱类菌素原(procholeragenoid)-真菌多糖的缀合物或遗传工程融合物。

本发明的一个重要方面涉及在哺乳动物或人类宿主体内诱导免疫应答的方法,所述方法包括将本发明的免疫原性组合物给予所述宿主。如果给予免疫有效量的所述免疫原性组合物,所述宿主将会产生所需免疫应答。给药量可以根据具体情况例如身高(体重)和宿主个体的发病状况而变。所述用量可以通过本领域技术人员已知的方式用常规试验确定。

当然,采用本发明的包装系统和/或方法生产的经分离的外源多肽可以用于制备亚单位疫苗。它们也可以用作抗原以产生多克隆抗体或单克隆抗体以及用于检测与本发明外源多肽有反应的抗体的免疫测定中。本发明所包括的免疫测定包括但不限于在美国专利第4,367,110号(双单克隆抗体夹心测定(double monoclonal antibody sandwich assay))和美国专利第4,452,901号(蛋白质印迹)中介绍的那些免疫测定。其它测定包括标记配体的免疫沉淀和免疫细胞化学,包括体外测定和体内测定。

本发明也提供设计加快进行题述方法的试剂盒。试剂盒用来通过装配实施所述方法所需的两种或两种以上组分,加快进行感兴趣的方法。试剂盒最好含有预先测定的单位量的组分,以将使用者需要测量的步骤减至最少。试剂盒最好包括用以实施一种或多种本发明方法的说明。试剂盒组分最好最优化以相互结合进行操作。

也可以用试剂盒产生本文公开的包装系统或者将所需外源基因插入到psRNAV复制子中。本发明的试剂盒包括便于测定复制子颗粒滴度的试剂盒。本发明的免疫原性组合物和药用制剂可以采用所公开的试剂盒制备。

参考实施例可以更好地理解以上所述的本发明。下述实施例仅用于说明,不应该理解为以任何方式限制本发明的范围。尽管MVA和VEE分别用作示例性的痘病毒和正链RNA病毒系统,但是技术人员将会认识到,无需过多实验,其它痘病毒和正链RNA病毒可互换使用。因此,考虑了其它痘病毒和/或甲病毒的应用,并且这些在本发明范围内。尽管也可以用痘苗病毒野生型毒株包装VRP,但是其在各种各样的细胞中的致细胞病变效应和无限制生长将会限制其效用。包括NYVAC毒株或具有有限宿主范围的天然存在的痘病毒在内的其它痘苗病毒宿主范围缺陷型突变株(例如,禽痘病毒、副痘病毒、山羊痘病毒、野兔痘病毒、猪痘病毒或昆虫痘病毒)也可以用作包装载体。可以使用的其它正链RNA病毒包括但不限于风疹病毒、丙型肝炎病毒、登革病毒、冠状病毒等。实施例

                     实施例1:

                    材料和方法1A  在感染早期能够表达高丰度T7 RNA聚合酶的重组MVA载体的研制

得自Bernard Moss博士(NIAID)的MVA母液((24)、(23)、(25))在补充10%胎牛血清(Life Technologies)的基本必需培养基(LifeTechnologies)中的合法的(certified)鸡胚成纤维细胞(CEF;SPAFAS)上噬斑纯化并且扩增。用该病毒作为插入所有外源基因和表达盒的亲代病毒。

对重组MVA表达载体(MVGKT7)工程改造,以在感染早期表达高丰度量的噬菌体T7 RNA聚合酶(图2)。必需在感染早期表达高丰度水平的T7聚合酶,如下所述,是因为VEE共感染限制从痘苗病毒晚期启动子进行表达。将T7 RNA聚合酶基因从pT7-Neo(S.Lee博士馈赠,Wyeth Lederle Vaccines)中切下作为BamHI片段,亚克隆到pSC65((9);得自Bernard Moss博士)的BglII位点,产生pGK16.2(参见图5)。技术人员将会知道,T7可以来自其它来源。该质粒含有在MVA胸苷激酶基因座中进行同源重组的侧翼序列、lac-Z标记基因和调节T7RNA聚合酶基因转录的合成早期/晚期痘苗病毒启动子(9)。重组病毒MVGKT7采用先前介绍的方法(36)产生。简而言之,先用MVA以感染复数(MOI)等于0.5噬斑形成单位(PFU)/细胞感染CEF,随后采用DOTAP转染试剂(Boehringer Mannheim)用pGK16.2转染。采用5-溴-4-氯-3-吲哚基-β-D-吡喃半乳糖苷(X-gal)显色噬斑测定((8)、(22)),将重组病毒在CEF上连续噬斑纯化三次。重组病毒的纯度和稳定性用兔多克隆抗T7聚合酶抗体(S.Lee博士馈赠,Wyeth Lederle Vaccines)和针对痘苗病毒产生的多克隆抗血清(BioGenesis)通过免疫染色进行评价。技术人员将会认识到,使用市售T7聚合酶、用常规血清制备方法容易产生多克隆抗T7聚合酶抗血清。这些方法的详细介绍其中可以见于Harlow和Lane编著,Antibodies,A Laboratory Manual,Cold SpringHarbor Press,1988。1B.诱导型基于MVA的VRP包装系统的研制

将用来在MVA缺失III中插入外源DNA的表达载体质粒pMCO3(得自B.Moss,(7))通过用BamHI消化和再连接而进行修饰(参见图6)。这除去了用来转录标记基因β-葡糖醛酸糖苷酶(GUS)的7.5K启动子和移动了用来转录GUS上游外源基因的合成早期/晚期启动子。所述经修饰的质粒pDF17在合成早期/晚期启动子-GUS基因上游含有单一PstI位点。缺陷型-辅助基因盒来源于本文中分别称为pVcap和pVgP的质粒pV3014Δ520-7505Δ8495-11229和pV3014Δ520-7505Δ7565-8386(得自AlphaVax,(27))。这两个辅助基因盒最初从来源于实验室的、在E1中含有1个突变(A272T)而在E2中含有2个突变(E209K,I239N)的高减毒VEE突变株V3014中分离出来,也是免疫原性的,已经作为一种表达载体使用((10)、(12))。质粒pVcap和pVgP分别用EcoRI/PstI或HindIII/EcoRI消化,以切下T7启动子-辅助基因盒(参见图7)。对两个盒的末端进行修饰,以含有匹配PstI的粘性末端,然后分别克隆至pDF17的PstI位点。所产生的质粒含有在T7启动子调节下的衣壳缺陷型辅助表达盒(pGK51)或者糖蛋白缺陷型辅助表达盒(pGK53)(参见图7)。通过将pGK51转染到受MVGKT7感染的细胞中,产生MVGKT7/DHCap(图8A),而将pGK53转染到受MVA感染的细胞中,产生MVA/DHgP,从而产生重组MVA载体。根据GUS基因表达,采用显色噬斑测定,对两种重组病毒进行选择(7)。这些病毒表达不被翻译成衣壳或糖蛋白的缺陷型辅助VEE RNA,除非它们通过VEE复制酶进行复制。因此,所述辅助病毒的表达被称为“诱导型的”。

开发诱导型基于MVA的VRP包装系统中的第二个步骤是对在T7启动子控制之下能够表达全长VEE复制子的重组MVA载体工程改造。如图9所示,对pLWl7(在MVA缺失II中能够插入外源基因的表达载体;得自B.Moss博士;参见图18;SEQ ID NO:3)进行几种修饰,使得可以克隆复制子cDNA。首先,将pLW17用SmaI和PstI消化,以除去用于外源基因表达的痘苗病毒H5R启动子,然后在此位置中插入单一NotI限制位点,产生pDF13(参见图9)。为了有助于克隆到终转移载体中,将存在于pDF13中的同源侧翼区之一的单一XbaI位点通过消化切除,用T4 DNA聚合酶补平并再连接。所产生的质粒pDF49用NotI消化,插入含有单一NotI、XbaI、Sse83871、SmaI和SalI限制位点的多接头,产生pDF51(参见图9)。痘苗病毒中期启动子(G8R)-lacZ表达盒来源于p30/300(得自B.Moss博士;(1))且插入到存在于pDF51多接头的SmaI位点中,以允许显色选择重组病毒。所产生的质粒(pGK61)含有两个用以插入到缺失II中的与MVA同源的区、lacZ显色标记基因和三个用于定向克隆VEE复制子cDNA的单一限制位点(Sse83871、XbaI和NotI)(参见图9)。

能够表达绿色荧光蛋白(GFP)基因的VEE复制子载体如下构建:通过从pEGFP-N3(Clontech;Palo Alto,CA)中取出SmaI-NotI片段的作为GFP基因,用T4 DNA聚合酶补平交错切口末端,插入到pVR3(pVR200的衍生物,得自AlphaVax)的EcoRV位点(参见图10)。所产生的表达质粒pVRGFP(Larry Smith博士提供;WyethLederle Vaccines)用XbaI和NotI消化,以切下前接T7启动子的整个复制子基因组-GFP(参见图10)。随后将连接T7启动子的复制子-GFP片段插入到pGK61中,产生pGK63(参见图11)。然后将该质粒转染到受MVA/DHgP感染的细胞中,产生含有在T7启动子转录调节下的VEE复制子-GFPcDNA和糖蛋白辅助基因两者的重组MVA病毒-MVA/VEEGFP/DHgP(参见图8A)。1C.组成型基于MVA的VRP包装系统的研制

用聚合酶链式反应(PCR)分别从pVRCap和pVRgP扩增衣壳可读框(ORF)和E3/E2/6K/E1多聚蛋白盒可读框。然后将这些片段克隆到pDF33(衍生于pMCO3的缺失III MVA表达载体(7))(参见图6和图12)。所产生的质粒pGK64和pGK65分别含有处于痘苗病毒合成早期/晚期启动子调节之下的衣壳ORF或E3/E2/6K/E1多聚蛋白ORF。采用上述方法,通过将pGK65转染到受MVGKT7感染的细胞中,产生能够表达T7 RNA聚合酶和VEE糖蛋白的重组MVA病毒。所产生的病毒(MVGKT7/gP)组成型地表达T7 RNA聚合酶和VEE突起(spike)糖蛋白(图8B)。

能够转录衣壳基因和VEE复制子RNA的一个独立重组MVA病毒分2个步骤工程改造。首先,将重组MVA病毒从已经用pGK64转染的受MVA感染的细胞中分离出来。该病毒(MVA/cap)含有一个表达盒,所述表达盒包含在MVA缺失III中插入的处于合成早期/晚期启动子控制之下的VEE衣壳基因。其次,将pGK63(来自上文实施例1B)转染到受MVA/cap感染的细胞中,产生MVA/VEEGFP/cap(图8B)。该病毒表达VEE衣壳基因并且也含有T7启动子调节的复制子-GFP表达盒。1D.VRP包装MVA的表征

采用染料终止循环测序(dye terminator cycle sequencing)和377 ABIDNA测序仪(Applied Biosystems),对重组质粒测序。通过PCR分析,检查重组MVA病毒的纯度。通过蛋白质印迹分析,分析E1和E2糖蛋白以及衣壳的表达。用重组MVA病毒以感染复数等于10PFU/细胞感染约2×106幼仓鼠肾(BHK21)细胞,于37℃孵育24小时。接下来,将细胞在SDS破碎缓冲液(0.05M Tris、4%SDS、4%β-巯基乙醇、10%甘油、0.1%溴酚蓝)中煮沸,采用小鼠超免疫抗VEE血清(ATCC,Manassas,VA)以1∶1,000稀释,通过免疫印迹法,分析等份样品。采用与碱性磷酸酶缀合的兔抗小鼠IgG第二抗体(Life Technologies)和Westem Blue底物(Promega,Madison,WI),使免疫印迹显色。也分析如前所述的与体外转录的VEE复制子-GFP RNA、gP辅助RNA和衣壳辅助RNA共同电穿孔的BHK-21细胞中的VEE结构蛋白表达((19)、(27))。(参见图16)。1E.VEE复制子颗粒(VRP)的产生

通过用MVGKT7/DHCap和MVA/VEEGFP/DHgP(一种示例性的诱导型系统;参见图4)或者MVGKT7/gP和MVA/VEEGFP/cap(一种示例性的组成型系统;参见图3)共感染BHK-21细胞,获得被称为VRP/GFP的VEE复制子颗粒,VRP/GFP在亚基因组启动子调节下表达GFP基因。通常,将重组病毒在最小体积的接种物中在室温下振摇吸附1小时。受感染细胞用PBS洗涤两次,在含有10%胎牛血清(FBS)的改良Eagle氏培养基(MEM)中孵育。采用以3,000xg离心10分钟,在24hpi后从受感染细胞培养基中收获复制子颗粒。对新鲜BHK-21细胞分析连续稀释的VRP/GFP制备物,在适当稀释下,通过对每孔荧光细胞总数计数测定滴度,以IU/ml表示。

VRP制备物中的重组MVA辅助病毒的滴度如下测定:通过用连续稀释的受感染细胞培养基感染CEF,在48hpi时,用2%甲醛固定细胞,随后用抗痘苗病毒抗血清(BioGenesis)、接着用辣根过氧化物酶缀合的抗兔IgG第二抗体(Life Technologies)对各单层免疫染色,最后用AEC Peroxidase Substrate Kit(Enzo)染色。重组MVA辅助病毒的滴度以PFU/ml表示。通过在原初Vero细胞中三次连续稀释传代后,在Vero细胞进行标准噬斑测定,分析通过辅助RNA和复制子之间重组产生的可能的污染性具有复制能力的VEE。该测定根据第二次传代后病毒的生长,鉴别复制子颗粒和具有复制能力的病毒。

                实施例2:

           MVA和VEE共感染的表征

为了评价VEE共感染受MVA感染的细胞是否影响痘病毒早期和/或晚期基因的表达,用或者在病毒早期启动子(MVA/7.5KlacZ)或者在晚期启动子(MVA/11KlacZ)控制下表达lacZ的两种重组MVA病毒感染用或者不用VEE共感染的细胞。用10PFU/细胞的单独的MVA/7.5KlacZ或MVA/11KlacZ或者再与10IU/细胞的VRP/GFP一起感染BHK-21细胞。在24hpi时收获细胞,测定β-半乳糖苷酶活性,这是一种痘病毒基因表达的度量(参见图13)。图13的样品1和样品3中检测的β-半乳糖苷酶水平分别显示出在MVA感染期间正常的早期和晚期基因表达。加入一种阻断MVA DNA复制的药物一胞嘧啶-β-D-呋喃阿拉伯糖苷(AraC)显示,晚期基因而不是早期基因被抑制(图13,比较样品2-4)。用MVA/11KlacZ和VRP/GFP共感染细胞显示,VEE复制对与晚期基因表达有影响,其作用与AraC相似。β-半乳糖苷酶表达在共感染细胞中降低接近95%(图13,比较样品3、4和7)。这表明MVA DNA复制和/或晚期基因转录被VEE复制抑制。MVA早期基因表达因用VRP/GFP共感染也被降低,尽管其降低程度低于晚期基因表达(图13,比较样品1-6)。

进行相似的实验以测定MVA感染对VEE复制的影响。(参见表1)。用单独的VRP/GFP或与MVA一起感染BHK-21细胞。在24hpi时,运用FACScan(Beckton Dickinson)和Cell Quest 3.1软件,通过流式细胞术分析细胞的GFP表达。GFP荧光强度与VEE亚基因组启动子转录水平成正比。令人惊奇的是,用VRP/GFP和MVA共感染的细胞比用单独的VRP/GFP感染的细胞所表达的GFP至少多50-60%。这提示一种或多种MVA基因产物似乎促进或刺激VEE的复制和/或转录。(参见表1),

图13和表1所示结果提示:1)可以用痘苗病毒强早期启动子(例如合成早期/晚期(9)、H5R(48)、Psel(47))表达VEE复制子和结构基因,2)VRP包装MVA的生长在VEE复制子包装期间急剧降低,从而进一步降低MVA意外污染VRP的危险,和3)在存在进行之中的MVA感染时,VEE复制和随后的颗粒形成可能被增强。

                  实施例3:

      诱导型基于MVA的VRP包装系统的表征

将用MVA/VEEGFP/DHgP(IMVA1)和MVGKT7/DHCap(IMVA2)共感染获得的滴度(参见图4)与用标准断裂-辅助RNA转染方法产生的滴度进行比较。选择BHK-21细胞作为细胞底物供包装使用,因为已经显示它们产生的VRP滴度最高。然而,BHK-21细胞不适用于采用基于MVA的VRP-包装系统大量生产VRP,这是因为它们对MVA生长是完全许可性的((6)、(13)、(4))。用构成诱导型包装系统的两种重组MVA载体以MOI为1、10或20总PFU/细胞感染BHK-21细胞。或者,所述细胞与通过T7 RNA聚合酶体外合成的VEE复制子-GFPRNA、衣壳DH RNA和gPDH RNA一起共同电穿孔。

在24小时收获受感染细胞和经电穿孔的细胞的培养基,用新鲜BHK-21细胞测定滴度。另外,将一些原始感染的和经电穿孔的在收获时细胞用胰蛋白酶消化和计数,以计算以每个细胞为单位的VRP产量。结果表明,所述诱导型基于MVA的VRP包装系统每个细胞平均产生20-60个VRP,而RNA转染法每个细胞约产生15个VRP(参见图14)。

尽管所述基于MVA的VRP包装系统比断裂-辅助RNA转染法产生的VRP多,但是仍然存在生物安全性问题,因为在复制子包装过程中可能产生具有复制能力的病毒。这是由于事实上诱导型基于MVA的VRP-包装系统和体外RNA转染法都使用能够与所述复制子重组的DH RNA。

                   实施例4:

       组成型基于MVA的VRP-包装系统的表征

在甲病毒感染期间,RNA种间重组率估计为10-6/复制循环(3)。此外,在辅助RNA末端上的复制序列长度和与复制子RNA重组可能性之间似乎有正相关性(27)。为了用断裂-辅助表达系统产生具有复制能力的病毒,需要两次重组事件,概率从10-6显著降低至10-12。然而,一次重组事件产生显著比例的具有能够表达除外源基因以外的一种结构基因、而不是两种结构基因的基因组的VRP。理论上,这些颗粒可以通过诱导载体特异性免疫应答而消除重组VRP的重复免疫。理论上,如果辅助基因可以作为缺乏VEE特异性调节元件的各种mRNA表达,而不是作为DH RNA表达,则通过重组产生具有复制能力的VEE的可能性将会进一步降低。此外,如果在辅助mRNA和VEE复制子之间发生单次重组事件,则表达辅助基因的概率将是无限小的,由于其缺乏亚基因组启动子所致。

我们在初步实验中观察到,用同一种载体组成型地共表达VEE衣壳和糖蛋白,抑制重组MVA的生长。通过将衣壳和糖蛋白基因插入到不同的重组载体中,分离出生长至正常滴度(>108PFU/ml)的稳定重组MVA病毒。进行初步实验以测定在用MVA/VEEGFP/cap(CMVA2)和MVGKT7/gP(CMVA1;示例性的组成型系统;参见图8B)共感染的BHK-21细胞中产生的VRP/GFP的滴度,将它们与通过断裂辅助RNA转染法获得的滴度进行比较。用MOI等于1、10或20PFU总病毒/细胞进行感染。在24小时收获受感染细胞和转染细胞的培养基,测定VRP/GFP滴度。用组成型重组MVA病毒共感染产生的滴度高达2×108IU/1×106细胞或约190VRP/GFP/细胞(参见图15)。该系统经常比DH RNA转染法产生的VRP滴度高。

也通过提供作为转染质粒的重组复制子和辅助功能物来产生VRP。将BHK-21细胞用以下组合的质粒转染:pGK63+pGK51+pGK53或pGK63+pGK64+pGK65。接下来,用MVGKT7感染经转柒的细胞。在24小时测定转染/感染细胞培养基的VRP/GFP滴度。将所述VRP/GFP滴度与通过VEE复制子-GFP RNA和两种断裂-辅助RNA共转染获得的VRP/GFP滴度进行比较(数据未显示)。

                     实施例5:

        使用基于MVA的VRP包装系统和RNA电穿孔

                 的结构蛋白表达的比较

为了测定通过基于MVA的VRP包装系统和RNA电穿孔法产生的甲病毒衣壳蛋白和糖蛋白的量,通过免疫印迹法分析受感染细胞和电穿孔细胞的裂解液。24hpi,制备细胞裂解液,用抗VEE抗血清探测。如图16A所示,在用组成型基于MVA的VRP-包装系统感染的细胞比在用诱导型基于MVA的VRP-包装系统或RNA电穿孔感染的细胞中衣壳(Cap)、E1和E2(gP)的表达略高。图16A也说明,只有当用两种示例性诱导型重组MVA病毒共感染细胞时才有可能表达VEE结构基因。相反,在各个组成型重组MVA病毒中相应的结构基因的表达与共转染无关(参见图16A,比较泳道3、4和5至泳道7、8和9)。最后,测定受感染细胞和转染细胞的培养基中VRP/GFP的存在(图16B)。结果表明,在VRP滴度和每种包装系统所产生的结构蛋白量之间有正相关性。

                 实施例6:

        MVA生长限制性细胞中的VRP包装

由于BHK-21细胞对于MVA生长是完全不许可性的,因此它们对于基于MVA的VRP包装系统不是理想细胞系。在VRP包装实验中测试限制MVA生长的一组细胞。用10PFU/细胞的MVA/VEEGFP/cap和MVGKT7/gP(组成型系统)感染相等数目的细胞,然后孵育24小时。收获受感染细胞的培养基,用新鲜BHK-21细胞测定的VRP/GFP滴度。如图17所示,2种人类细胞系(MRC-5和WI38)、1种仓鼠细胞系(CHO)和1种非人类灵长类细胞系(Vero)产生的VRP滴度显著低于用BHK-21细胞获得的VRP滴度。令人惊奇的是,胎恒河猴肺(FRhL)细胞产生的VRP/GFP滴度与BHK-21一样高。

                   实施例7:

         MVA生长在VRP-包装期间严重受抑制

应用所述基于MVA的VRP包装系统的一种潜在限制是VRP制剂可能被MVA重组体污染,即使大多数MVA病毒仍为细胞伴随病毒时而VRP从细胞膜出芽。如实施例2所述,MVA晚期基因表达因VEE复制而被抑制。为了测量MVA生长抑制水平,用单独的MVGKT7/gP或者用MVGKT7/gP与MVA/VEEGFP/cap一起感染BHK-21细胞(允许MVA生长)或FRhL细胞(限制MVA生长)。用单独的MVGKT7/gP感染不会导致或者VEE复制或者VRP产生。然而,用MVA/VEEGFP/cap共感染,导致VEE复制子复制和VRP产生(参见图15)。在24hpi时,收获单感染或共感染的细胞培养基,用CEF测定重组MVA病毒滴度。在用单独的MVGKT7/gP感染的FRhL细胞中清楚地显示宿主范围生长限制(表2)。例如,在无VEE复制时,在BHK-21和FRhL细胞中产生的平均PFU/细胞分别为435PFU/细胞和0.6PFU/细胞。当用MVAGKT7/gP和MVAVEEGFP/cap共感染时,平均PFU/细胞在BHK-21细胞(正常许可)中降低至1.1,而在FRhL细胞中降低至0.007。因此,与实施例2获得的结果一致,在VEE复制期间,MVA生长大大降低。

                  实施例8:

       采用MVA指示病毒测定VRP滴度的方法

这一小节描述了测定VEE复制子颗粒(VRP)滴度的方法,所述方法利用与在包装这些颗粒中所用病毒相似的重组MVA病毒。简而言之,用MVA重组体将一种报道基因传递至正在培养物中生长的合适细胞系中。用复制子颗粒共感染这些细胞激活了MVA指示病毒的报道基因,使得受感染细胞可以被检测、计数,从而可以测定该制备物的滴度。

在应用VRP进行研究、基因表达和疫苗生产时,这种滴度测定系统满足重要的要求。目前,测定VRP制备物滴度的唯一实用方法是通过免疫组织化学、应用针对外源蛋白的抗体或对由VRP编码的外源蛋白工程改造的标志。然而,对于特定基因产物并不总是可得到抗体,并且制备抗体是需要分离和纯化免疫原的一个漫长过程。

所述测定利用所有功能性复制子颗粒都编码复制和转录VEERNA的VEE非结构蛋白(nsP)的事实。通过测定功能性nsP,所述测定能够不依赖于它们所表达的外源基因产物而测定VRP滴度。这在VRP制备物之间进行更加精确的比较,尤其是在免疫检测的检测灵敏度在制备物之间显著不同的情况下。

用于构建这种MVA病毒指示物的质粒转移载体(p2104)示于图19中。它由2个基因盒、1个在噬菌体T7转录启动子控制下编码绿色荧光蛋白(GFP)的缺陷型VEE RNA编码基因和在痘苗病毒合成早期-晚期启动子控制下的葡糖醛酸糖苷酶(gus)基因(作为选择标记)组成。所述缺陷型VEE RNA的结构与上述“复制子样辅助RNA”相似。因此,所产生的RNA具有与VEE病毒RNA相同的5′端和3′端,缺失编码nsP的VEE区中的90%,VEE亚基因组启动子指导蛋白产物的合成。然而,该RNA不编码或者VEE糖蛋白或者VEE衣壳蛋白,而是编码GFP报道蛋白。gus基因用来使得能够分离重组病毒。p2104中的这2个基因盒邻接指导该质粒重组到MVA缺失III中的MVA序列。将p2104质粒重组到已经在胸苷激酶基因座编码合成早期/晚期启动子控制下的T7 RNA聚合酶的MVA的缺失III(MVGKT7;参见图2)中。所产生的病毒(IMVA3,图20)用作所述滴度测定中的指示物。

所述通用复制子滴度测定系统示于图21中。使用一种MVA非允许性但为VEE复制允许性细胞系(例如Vero)。用IMVA3指示病毒以感染复数为5感染细胞,以确保培养物中的所有细胞被感染。该病毒合成识别T7启动子(T7 Pr)并转录编码GFP的缺陷型“VEE样”RNA(nsP-GFP)的T7 RNA聚合酶。由于翻译起始是从距该RNA 5′端大约500个碱基开始并且由于几个终止密码子位于GFP可读框之前,因此GFP不从该RNA翻译。受MVA指示病毒感染的培养物用连续稀释、未知滴度的VRP制备物共感染。VRP传递至受MVA指示病毒感染的细胞的细胞质中,其复制子RNA立即翻译产生由nsP基因编码的VEE复制酶-转录酶复合体。VEE复制酶起始缺陷型GFP RNA的复制,并且也转录存在于(-)-链(反义)复制中间体上的亚基因组启动子。这导致合成大量的编码GFP的mRNA(亚基因组GFP RNA)。GFP mRNA的翻译使细胞在UV光下发荧光。对荧光细胞计数,根据外推法,测定VRP原始母液的滴度。

测试IMVA3指示病毒测定表达单纯疱疹病毒糖蛋白D(VRPgD)的VEE复制子颗粒滴度的能力。用IMVA3以MOI等于10PFU/细胞或者用IMVA3以MOI为10PFU/细胞加上连续稀释的、未知滴度的VRPgD制备物感染Vero细胞的融合培养物。在24hpi时,用2%甲醛固定细胞,并且用荧光显微镜术显现(图23)。结果表明,除非用一种复制子颗粒和IMVA3指示病毒两者共感染细胞,否则GFP不表达。图23中的图面C显示了VRPgD稀释系列中的一个代表性视野。

VEE复制和MVA基因表达之间的干扰不成问题,因为我们用实施例2(表1)中所示数据已经确立了MVA感染实际上增强VEE复制。我们也说明仅仅是晚期MVA基因表达受VEE抑制(图13)。因此,所述测定利用在早期以及晚期起作用的痘苗病毒启动子。

一种新培斯病毒复制子的通用测定先前已有描述(53)。该系统使用编码转录处于细胞RNA聚合酶II启动子控制之下的报道基因的缺陷型RNA。为了应用该系统,首先可能必需分离出表达该转录物的稳定细胞系。稳定哺乳动物细胞系的分离是一项费时费力的工作。基于MVA的报道系统显著减少建立这种测定的工作量。

                     实施例9:

               扩增复制子颗粒的方法

除用作从头产生甲病毒复制子颗粒的方法之外,采用MVA表达载体扩增甲病毒复制子颗粒也是可行的。为了扩增甲病毒复制子颗粒制备物,人们可用低MOI(1-5IU/细胞)的复制子颗粒制备物和较高MOI(5-20PFU/细胞)的表达包装所需的结构基因的MVA重组病毒共感染细胞系(例如胎恒河猴肺即FRhL)。在24-48hpi时,收集培养基,如实施例1中所述方法纯化新包装的复制子颗粒。

下文提供参考文献一览表,所述参考文献都通过引用结合到本文中用于任何目的。

1.Baldick,C.J.,J.G.Keck和B.Moss.1992.Mutational analysis ofthe core,spacer and initiator regions of vaccinia virus intermediate classpromoters(痘苗病毒中间类别启动子核心区、间隔区和起始区的突变分析).J.Virol.66:4710-4719。

2.Barrett,N.,A.Mitterer,W.Mundt,J.Eibl,M.Eibl,R.C.Gallo,B.Moss和F.Dorner.1989.Large-scale production and purification of avaccinia recombinant-derived HIV-1 gp160 and analysis of itsimmunogenicity(痘苗病毒重组衍生HIV-1 gp160的大规模生产和纯化及其免疫原性分析).AIDS Res.Human Retroviruses.5:159-171。

3.Berglund,P.,M.Sjoberg,H.Garoff,G.J.Atkins,B.J.Sheahan和P.Liljestrom.1993.Semliki Forest virus expression system:production ofconditionally infectious recombinant particles(西门利启森林病毒表达系统:条件感染性重组颗粒的产生).Bio/Technology.11:916-920。

4.Blanchard,T.J.,A.Alcami,P.Andrea和G.L.Smith.1998。Modified vaccinia virus Ankara undergoes limited replication in humancells and lacks several immunomodulatory proteins:implications for use asa human vaccine(经修饰的痘苗病毒Ankara在人类细胞中经历有限复制并且缺乏几种免疫调节蛋白:用作人类疫苗的前景).Journal ofGeneral Virology.79:1159-1167。

5.Bredenbeek,P.J.;I.Frolov,C.M.Rice和S.Schlesinger.1993.Sindbis virus expression vectors:packaging of RNA replicons by usingdefective helper RNAs(新培斯病毒表达载体:利用缺陷型辅助RNA包装RNA复制子).J.Virol.67:6439-6446。

6.Carroll,M.和B.Moss.1997.Host range and cytopathogenicity ofthe highly attenuated MVA strain of vaccinia virus:propagation andgeneration of recombinant viruses in a nonhuman mammalian cell line(高减毒痘苗病毒MVA毒株的宿主范围和致细胞病性:重组病毒在非人类哺乳动物细胞系中的繁殖和产生).Virology:198-211。

7.Carroll,M.W.和B.Moss.1995.E.coli β-glucuronidase(GUS)asa marker for recombinant vaccinia viruses(大肠杆菌β-葡糖醛酸糖苷酶(GUS)作为重组痘苗病毒的标记).BioTechniques.19:352-354。

8.Chakrabarti,S.,K.Brechling和B.Moss.1985.Vaccinia virusexpression vector:Coexpression of β-galactosidase provides visualscreening of recombinant virus plaques(痘苗病毒表达载体:β-半乳糖苷酶的共表达提供重组病毒噬斑的目测筛选).Mol.Cell.Biol.5:3403-3409。

9.Chakrabarti,S.,J.R.Sisler和B.Moss.1997.Compact,synthetic,vaccinia virus early/late promoter for protein expression(用于蛋白质表达的压缩合成痘苗病毒早期/晚期启动子).BioTechniques.23:1094-1097。

10.Davis,N.L.,Powell,N.,Greenwald,G.F.,Willis,L.V.,Johnson,B.J.B.,Smith,J.F.,Johnston,R.E.199 1.Attenuating mutations in the E2glycoprotein gene of Venezuelan equine encephalitis virus:Construction ofsingle and multiple mutants in the a full-length cDNA clone(委内瑞拉马脑炎病毒E2糖蛋白基因中的减毒突变:在全长cDNA克隆中构建单突变体和多突变体).Virology.183:20-31。

11.Davis,N.L.,Willi.s,L.V.,Smith,J.F.,Johnston,R.E.1989.Invitro synthesis of infectious Venezuelan equine encephalitis virus RNAfrom a cDNA clone:Analysis of a viable deletion mutant(从cDNA克隆体外合成感染性委内瑞拉马脑炎病毒RNA:活缺失突变体的分析).Virology.171:189-204。

12.Davis,N.L.,K.W.Brown和R.E.Johnston.1996.A viralvaccine vector that expresses foreign genes in lymph nodes and protectsagainst mucosal challenge(一种在淋巴结中表达外源基因和防止粘膜攻击的病毒疫苗载体).Journal of Virology.70:3781-3787。

13.Drexler,I.,K.Heller,B.Wahren,V.Erflle和G.Sutter.1998.Highly attenuated modified vaccinia virus Ankara replicates in babyhamster kidney cells,a potential host for virus propagation,but not invarious human transformed and primary cells(经修饰的高减毒痘苗病毒Ankara可在幼仓鼠肾细胞-病毒繁殖的潜在宿主中复制,但在各种人类转化细胞和原代细胞中不复制).Journal of General Virology.79:347-352。

14.Frolov,I.,Hoffman,T.A.,Pragai,B.M.,Dryga,S.A.,Huang,H.V.,Schlesinger,S.,Rice,C.M.1 996.Alphavirus-based expression vectorsStrateles and Applications(基于甲病毒的表达载体:策略和应用).Proceedings of the National Academy of Sciences,USA.93:11371-11377。

15.Garoff,H.和K.J.Li.1998.Recent advances in gene expressionusing alphavirus vectors(在基因表达中应用甲病毒载体的最新进展).Curr.Opin.Biotechnol.9。

16.Hewson,R.2000.RNA viruses:emerging vectors for vaccinationand gene therapy(RNA病毒:出现的供疫苗接种和基因治疗用的载体).Molecular Medicine Today.6:28-35。

17.Johnston,R.E.和C.J.Peter.1996.Alphaviruses,第3版,第1卷.Lippincott-Raven,Philadelphia。

18.Kuhn,R.J.,H.G.M.Niesters,Z.Hong和J.H.Strauss.1991.Infectious RNA transcripts from Ross River virus cDNA clones and thecostruction and characterization of defined chimeras with Sindbis virus(得自罗斯河病毒cDNA克隆的感染性RNA转录物以及与新培斯病毒的限定嵌合体的构建和表征).Virology.182:430-441。

19.Liljestrom,P.和H.Garoff.1991.A new generation of animal cellexpression vectors based on the semliki forest virus replicon(新一代的基于西门利启森林病毒复制子的动物细胞表达载体).Bio/techmology.9:1356-1361。

20.Liljestrom,P.,S.Lusa,D.Huylebroeck和H.Garoff.1991.Invitro mutagenesis of a full-length cDNA clone of Semliki Forest virus:thesmall 6,000-molecular weight membrane protein modulates virus release(西门利启森林病毒全长cDNA克隆的体外诱变:小的6,000-分子量膜蛋白调节病毒释放).Journal of Virology.65。

21.Lundstrom,K.1997.Alphaviruses as expression vectors(作为表达载体的甲病毒).Curr.Opin.Biotechnol.8。

22.Mackett,M.,G.L.Smith和B.Moss.1984.General method forproduction and selection of infectious vaccinia virus recombinantsexpressing foreign genes(生产和选择表达外源基因的感染性痘苗病毒重组体的通用方法).J.Virol.49:857-864。

23.Mayr,A.,V.Hochstein-Mintzel和H.Stickl.1975.Abstammung,eigenschaften und verwendung des attenuierten vaccinia-stammes MVA.Infection.3:6-14。

24.Mayr,A.和E.Munz.1964.Vernderung von vaccinevirus durchdauerpassagen in hühnerembryofibroblastenkulturenChanges in vaccine virus caused by prolonged passage through chickembryo fibroblast cultures(A contribution to the specialization of vaccinevirus strains towards original pox viruses)(通过鸡胚胎成纤维细胞培养物传代时间延长引起的疫苗病毒中的变化(归因于疫苗病毒株向原始痘病毒的特化)).Zbl.Bakt.Orig.I.195:25-35。

25.Mayr,A.,H.Stickl,H.K.Müller,K.Danner和H.Singer.1978.Der pockenimpfstamm MVA:Marker,genetische struktur,erfahrungen mitder parenteralen schutzimpfung und verhalten im abwehrgeschwchtenorganismus.The smallpox vaccination strain MVA:Marker,geneticstructure,experience gained with the parenteral vaccination and behavior inorganisms with a debilitated defence mechanism(天花种痘毒株MVA:标记、遗传结构、胃肠外接种疫苗获得的经历和在防御机制虚弱的生物体内的行为).Zbl.Bakt.Hyg.167:375-390。

26.Polo,J.M.,B.A.Belli,D.A.Driver,I.Frolov,S.Sherrill,M.J.Hariharan,K.Townsend,S.Perri,S.J.Mento,D.J.Jolly,S.M.W.Chang,S.Schlesinger和T.W.Dubensky.1999.Stable alphavirus packaging celllines for Sindbis virus and Semliki Forest virus-derived vectors(新培斯病毒和西门利启森林病毒源性载体的稳定甲病毒包装细胞系).Proc.Natl.Acad.Sci.USA.96:4598-4603。

27.Pushko,P.,M.Parker,G.V.Ludwig,N.L.Davis,R.E.Johnston和J.F.Smith.1997.Replicon-helper systems from attenuated Venezuelanequine encephalitis virus:Expression of heterologous genes in vitro andimmunization against heterologous pathogens in vivo(得自减毒委内瑞拉马脑炎病毒的复制子-辅助系统:异源基因在体外的表达和在体内针对异源病原体的免疫).Virology.239:389-401。

28.Meyer,H.,G.Sutter和A.Mayr.1991.Mapping of deletions inthe genome of the highly attenuated vaccinia virus MVA and their influenceon virulence(高减毒痘苗病毒MVA基因组中的缺失作图及其对毒力的影响).J.Gen.Virol.72:1031-1038。

29.Raju,R.,S.V.Subramanian和M.Hajjou.1995.Identification ofa region in the Sindbis virus nucleocapsid protein that is involved inspecificity ofRNA encapsidation(涉及RNA包衣壳特异性的新培斯病毒核衣壳蛋白区的鉴定).Journal ofVirology.69:7391-7401。

30.Rice,C.M.1996.Alphavirus-based expression systems(基于甲病毒的表达系统).Plenum Press,New York。

31.Rice,C.M.,R.Levis,J.H.Strauss和H.V.Huang.1987.Production of infectious transcripts from Sindbis virus cDNA clones:mapping of lethal mutations,rescue of a temperature-sensitive marker andin vitro mutagenesis to generate defmed mutants(新培斯病毒cDNA克隆的感染性转录物的产生:致死突变作图、温度敏感型标记的拯救和产生限定突变体的体外诱变).Journal ofVirology.61:3809-3819。

32.Schlesinger,S.和M.Schlesinger.1996.Togaviridae:The Virusesand Their Replication,第3版,第1卷.Lipincott-Raven Publishers,Philadelphia。

33.Smerdou,C.和P.Liljestrom.1999.Two-helper RNA system forproduction ofrecombinant Semliki Forest Virus Particles(用于产生重组西门利启森林病毒颗粒的两种辅助RNA系统).Journal of Virology.73:1092-1098。

34.Strauss,J.H.和E.G.Strauss.1994.The alphaviruses:Geneexpression,replication,and evolution(甲病毒:基因表达、复制和进化).Microbiological Reviews.58:491-52。

35.Strauss,J.H.和E.G.Strauss.1997.Recombination inalphaviruses(甲病毒重组).Seminars in Virology.8:85-94。

36.Sutter,G.和B.Moss.1992.Nonreplicating vaccinia vectorefficiently expresses recombinant genes(非复制型痘苗病毒载体有效表达重组基因).Proc.Natl.Acad.Sci.US A.89:10847-10851。

37.Weiss,B.G.和S.Schlesinger.1991.Recombination betweenSindbis virus RNAs(新培斯病毒RNA之间的重组).J.Virol.65:4017-4025。

38.Sambrook等.1989.Molecular Cloning-A Laboratory Manual.Cold Spring Harbor Press(Cold Spring Harbor,New York)。

39.Ausbel等.1993(including supplements through August 2000(包括直至2000年8月的增补本)).Current Protocols in Molecular Biology.John Wiley&Sons。

40.Beaucage等.2000.Current Protocols in Nucleic Acid Chemistry.John Wiley&Sons。

41.Autoine等.1998.The complete genomic sequence of the modifiedvaccinia virus Ankara strain:comparison with other orthopoxviruses(经修饰的痘苗病毒Ankara毒株的完整基因组序列:与其它正痘病毒的比较).Virology 244:365-96。

42.Antoine,G.,F.Scheiflinger,G.Holzer,T.Hangmann,F.G.Falkner和F.Dorner.1996.Characterization of the vaccinia MVAhemagglutinin gene locus and its evaluation as an insertion site for foreigngenes(痘苗病毒MVA血凝素基因座的表征及其作为外源基因插入位点的评价).Gene:43-46。

43.Blanchard,T.J.,A.Alcami,P.Andrea和G.L.Smith.1998.Modified vaccinia virus Ankara undergoes limited replication in humancells and lacks several immunomodulatory proteins:implications for use asa human vaccine(经修饰的痘苗病毒Ankara在人类细胞中经历有限复制并且缺乏几种免疫调节蛋白:用作人类疫苗的前景).Journal ofGeneral Virology.79:1159-1167。

44.Carroll,M.和B.Moss.1997.Host range and cytopathogenicity ofthe highly attenuated mVA strain of vaccinia virus:propagation andgeneration of recombinant viruses in a nonhuman mammalian cell line(高减毒痘苗病毒mVA毒株的宿主范围和致细胞病性:重组病毒在非人类哺乳动物细胞系中的繁殖和产生).Virology:198-211。

45.Chakrabarti,S.,J.R.Sisler和B.Moss.1997.Compact,synthetic,vaccinia virus early/late promoter for protein expression(用于蛋白质表达的压缩合成痘苗病毒早期/晚期启动子).BioTechniques.23:1094-1097。

46.Drexler,I.,K.Heller,B.Wahren,V.Erfle和G.Sutter.1998.Highly attenuated modified vaccinia virus Ankara replicates in babyhamster kidney cells,a potential host for virus propagation,but not invarious human transformed and primary cells(经修饰的高减毒痘苗病毒Ankara可在幼仓鼠肾细胞-病毒繁殖的潜在宿主中复制,但在各种人类转化细胞和原代细胞中不复制).Journal of General Virology.79:347-352。

47.Hammond,J.M.,P.G.Oke和B.E.H.Coupar.1997.A syntheticvaccinia virus promoter with enhanced early and late activity(一种具有增强的早期和晚期活性的合成痘苗病毒启动子).Journal of VirologicalMethods.66:135-138。

48.Kovacs,G.R.和B.Moss.1996.The vaccinia virus H5R geneencodes viral late gene transcription factor-4:purification,cloning andoverexpression(痘苗病毒H5R基因编码病毒晚期基因转录因子-4:纯化、克隆和过量表达).Journal ofVirology.70:6796-6802。

49.Altenburger,W.,C.-P.Süter和J.Altenburger.1989.Partialdeletion of the human host range gene in the attenuated vaccinia virus MVA(人类宿主范围基因在减毒痘苗病毒MVA中的部分缺失).Arch.virol.105:15-27。

50.Hirsch,V.M.,S.Goldstein,R.Chanock,W.R.Elkins,G.Sutter,B.Moss,J.Sisler,J.Lifson和T.Fuerst.1995.Limited virus replicationfollowing SIV challenge of macaques immunized with attenuated MVAvaccinia expressing SIVsm env and gag-pol(在SIV攻击用表达SIVsmenv和gag-pol的减毒MVA痘苗病毒免疫的恒河猴后的有限病毒复制).Vaccines 95:195-200。

51.Meyer,H.,G.Sutter和A.Mayr.1991.Mapping of deletions inthe genome of the highly attenuated vaccinia virus MVA and their influenceon virulence(高减毒痘苗病毒MVA基因组的缺失作图及其对毒力的影响).J.Gen.Virol.72:1031-1038。

52.Schleiflinger,F.,Falkner,F.G.和Dorner,F.1996.Evaluation ofthe thymidine kinase(TK)locus as an insertion site in highly attenuatedvaccinia virus MVA strains(作为插入位点的胸苷激酶(TK)基因座在高减毒痘苗病毒MVA毒株中的评价).Archives of Virology 141:663-69。

53.Olivo,P.D.,Frolov,I.和Schlesinger,S.1994.A cell line thatexpresses a reporter gene in response to infection by Sindbis virus:aprototype for detection ofpositive strand RNA viruses(一种对新培斯病毒感染应答而表达报道基因的细胞系:用于检测正链RNA病毒的原型).Virology 198:381-384。

54.Strauss,J.H.和Strauss.2001.E.G.Virus Evolution:How Does anEnveloped Virus Make a Regular Structure(病毒进化:有包膜病毒如何产生正常结构).Cell 105:5-8。

55.Behrens,S.E.,Grassmann,C.W.,Thiel,H.J.,Meyers,G.和Tautz,N.1998.Characterization of an autonomous subgenomic pestivirus RNAreplicon(自主亚基因组瘟病毒属RNA复制子的表征).J.Virol.72:2364-2374。

56.Pietschmann,T.,Lohmann.,V.,Rutter,G.,Kurpanek,K.和Bartenschlager,R.1991.Characterization of cell lines carrying self-replicating hepatitis C virus RNAs(携带自我复制型丙型肝炎病毒RNA的细胞系的表征).J.Virol.75:1252-1264。

57.Khromykh,A.A.,Vamavski,A.N.和Westaway,E.G.1998.Encapsidation of the flavivirus Kunjin replicon RNA by using acomplementation system providing Kunjin virus structural proteins in trans(利用反式提供Kunjin病毒结构蛋白的互补系统对黄病毒Kunjin复制子RNA进行包衣壳).J.Virol.72:5967-5977。

58.Porter,D.,Ansardi,D.C.和Morrow,C.D.1995.Encapsidation ofPoliovirus Replicons Encoding the Complete Human ImmunodeficierncyVirus Type 1 gag Gene by Using a Complementation System WhichProvides the P1 Capsid Protein in trans(利用反式提供P1衣壳蛋白的互补系统对编码完整人免疫缺陷病毒I型gag基因的脊髓灰质炎病毒复制子进行包衣壳).J.Virol.69:1548-1555。

59.Almazan,F.,Gonzalez,J.M.,Penzes,Z.,Izeta,A.,Calvo,E.和Plana-Duran,J.2000.Engineering the largest RNA virus genome as aninfectious bacterial artificial chromosome(对作为感染性细菌人工染色体的最大RNA病毒基因组工程改造).PNAS 97:5516-5521

尽管已经参考各种应用、方法和组合物描述了本发明,但是人们将会认识到,在不偏离本发明的情况下,可以进行各种变化和修改。

                           序列表<110>美国氰胺公司(American Cyanamid Company)<120>正链RNA病毒复制子颗粒的包装<130>01142-0200-00304<140><141><150>60/228,906<151>2000-08-29<160>3<170>PatentIn Ver.2.1<210>1<211>42<212>PRT<213>人(Homo sapiens)<400>1Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys  1               5                  10                  15Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile

         20                  25                  30Gly Leu Met Val Gly Gly Val Val Ile Ala

     35                  40<210>2<211>28<212>PRT<213>人(Homo sapiens)<400>2Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys  1               5                  10                  15Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys

         20                  25<210>3<211>4082<212>DNA<213>人工序列<220><223>人工序列的描述:载体pLW17<400>3cctcctgaaa aactggaatt taatacacca tttgtgttca tcatcagaca tgatattact 60ggatttatat tgtttatggg taaggtagaa tctccttaat atgggtacgg tgtaaggaat 120cattatttta tttatattga tgggtacgtg aaatctgaat tttcttaata aatattattt 180ttattaaatg tgtatatgtt gttttgcgat agccatgtat ctactaatca gatctattag 240agatattatt aattctggtg caatatgaca aaaattatac actaattagc gtctcgtttc 300agacatggat ctgtcacgaa ttaatacttg gaagtctaag cagctgaaaa gctttctctc 360tagcaaagat gcatttaagg cggatgtcca tggacatagt gccttgtatt atgcaatagc 420tgataataac gtgcgtctag tatgtacgtt gttgaacgct ggagcattga aaaatcttct 480agagaatgaa tttccattac atcaggcagc cacattggaa gataccaaaa tagtaaagat 540tttgctattc agtggactgg atgattcgag gtacccgggg atcctctaga gtcaacctta 600tttatgatta tttctcgctt tcaatttaac acaaccctca agaacctttg tatttatttt 660caatttttag ctgcaggtgg atgcgatcat gacgtcctct gcaatggata acaatgaacc 720taaagtacta gaaatggtat atgatgctac aattttaccc gaaggtagta gcatggattg 780tataaacaga cacatcaata tgtgtataca acgcacctat agttctagta taattgccat 840attggataga ttcctaatga tgaacaagga tgaactaaat aatacacagt gtcatataat 900taaagaattt atgacatacg aacaaatggc gattgaccat tatggagaat atgtaaacgc 960tattctatat caaattcgta aaagacctaa tcaacatcac accattaatc tgtttaaaaa 1020aataaaaaga acccggtatg acacttttaa agtggatccc gtagaattcg taaaaaaagt 1080tatcggattt gtatctatct tgaacaaata taaaccggtt tatagttacg tcctgtacga 1140gaacgtcctg tacgatgagt tcaaatgttt cattgactac gtggaaacta agtatttcta 1200aaattaatga tgcattaatt tttgtattga ttctcaatcc taaaaactaa aatatgaata 1260agtattaaac atagcggtgt actaattgat ttaacataaa aaatagttgt taactaatca 1320tgaggactct acttattaga tatattcttt ggagaaatga caacgatcaa accgggcatg 1380caagcttgtc tccctatagt gagtcgtatt agagcttggc gtaatcatgg tcatagctgt 1440ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa 1500agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac 1560tgcccgcttt cgagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg 1620cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact gactcgctgc 1680gctcggtcgt tcggctgcgg cgagcggtat cagctcactc aaaggcggta atacggttat 1740ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag caaaaggcca 1800ggaaccgtaa aaaggccgcg ttgctggcgt ttttcgatag gctccgcccc cctgacgagc 1860atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta taaagatacc 1920aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg 1980gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta 2040ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg 2100ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac 2160acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag 2220gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga aggacagtat 2280ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt agctcttgat 2340ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag cagattacgc 2400gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct gacgctcagt 2460ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct 2520agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat gagtaaactt 2580ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctatttc 2640gttcatccat agttgcctga ctccccgtcg tgtagataac tacgatacgg gagggcttac 2700catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct ccagatttat 2760cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca actttatccg 2820cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg ccagttaata 2880gtttgcgcaa cgttgttggc attgctacag gcatcgtggt gtcacgctcg tcgtttggta 2940tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc cccatgttgt 3000gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag 3060tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa 3120gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc 3180gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat agcagaactt 3240taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc 3300tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta 3360ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa 3420taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat tattgaagca 3480tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac 3540aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgacgtctaa gaaaccatta 3600ttatcatgac attaacctat aaaaataggc gtatcacgag gccctttcgt ctcgcgcgtt 3660tcggtgatga cggtgaaaac ctctgacaca tgcagctccc ggagacggtc acagcttgtc 3720tgtaagcgga tgccgggagc agacaagccc gtcagggcgc gtcagcgggt gttggcgggt 3780gtcggggctg gcttaactat gcggcatcag agcagattgt actgagagtg caccatatgc 3840ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggcgc cattcgccat 3900tcaggctgcg caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc 3960tggcgaaagg gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt 4020cacgacgttg taaaacgacg gccagtgaat tggatttagg tgacactata gaatacgaat 4080tc                                                                4082

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号