首页> 中国专利> 一种基于层转移的晶硅薄膜的制备方法

一种基于层转移的晶硅薄膜的制备方法

摘要

本发明提供一种基于层转移的晶硅薄膜的制备方法,包括:1)于单晶硅衬底表面形成用于制作周期性棒阵列的掩膜,采用化学湿法刻蚀或干法刻蚀工艺于单晶硅衬底上形成周期性的硅棒阵列;2)于单晶硅衬底表面及硅棒阵列表面形成阻挡层;3)采用选择性刻蚀工艺暴露硅棒阵列顶部的硅,形成硅核阵列;4)以硅核阵列作为外延生长的籽晶或成核位置,采用化学气相沉积法于硅棒阵列顶部形成连续的硅膜;5)剥离硅膜,将其转移至一预设基底。本发明以单晶硅片为母衬底,所生长硅膜能够继承母衬底的晶体质量,藉此保证硅膜的高晶体质量;硅膜剥离后,衬底经过简单处理后可以重复使用,同时气相化学沉积硅膜生长工艺简单,从而可有效地降低硅膜生产成本。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-12-28

    授权

    授权

  • 2014-12-10

    实质审查的生效 IPC(主分类):H01L21/02 申请日:20130508

    实质审查的生效

  • 2014-11-12

    公开

    公开

说明书

技术领域

本发明属于半导体材料技术领域,具体是一种基于层转移的晶硅薄膜的制备方法。

背景技术

资源丰富、可再生、无污染的太阳能是国家新能源战略的一个极其重要的选项。由于硅 半导体工艺技术成熟、材料资源丰富、光电转化效率高,在当前光伏产业中晶硅电池占据了 85%以上的市场份额。晶硅电池转化效率高的根本原因是在于高晶体质量,保证了高少子寿 命和长少子扩散长度。但是单晶硅片的制作是一个高能耗和高耗损的过程,是太阳能电池走 向平民化的最大屏障。基于此,研究直接利用含硅气体外延生长层转移单晶硅薄膜成为新的 热点。

经过对现有技术检索发现,日本的Tayanaka和德国的Brendel在1996年、1997年相续 独立提出多孔硅层转移技术。具体工艺过程是:以单晶硅片为衬底,通过阳极电化学刻蚀在 表面形成不同孔隙率的多孔硅结构;经过高温退火多孔结构重构,孔隙率较小的上表面孔闭 合,恢复单晶结构,可用于外延生长高晶体质量的硅膜,孔隙率较大的下层孔隙增大到几十 微米,使得上层单晶薄膜与下层母体晶硅只保持弱机械连接,可作为后续剥离外延单晶硅薄 膜的牺牲层。采用该方法,1998年Tayanaka研究组就取得了转化效率12.5%的电池器件。但 在此之后,电池的效率提升的非常缓慢。直到2009年,Reuter等人通过高温氧化钝化薄膜表 面并利用光刻工艺制作局部接触式电极,用50μm厚硅膜,2cm2面积的电池效率达到17%。 2011年,德国哈梅林研究所采用AlOX钝化薄膜表面,将43μm厚硅膜电池效率提高到19.1%。 2012年10月,在新加坡召开的亚太光伏会议上美国Solexel公司公布了其43μm厚硅膜, 156mm×156mm面积的电池效率达到20.6%。使得多孔硅层转移技术再次向前迈进一大步。

多孔硅层转移技术发展比较慢,主要有以下问题:(1)硅薄膜的质量取决于多孔硅层的 质量,在大面积上难以实现孔隙的均匀性以及多孔结构的力学和热学稳定性;(2)对于薄膜, 有效制备阳面绒面结构以及高质量背面反射层结构困难;(3)多孔层容易受热、机械应力脆 裂,不利于上层外延膜依附母板进行制绒。而剥离、制绒后,必须保持薄膜处于自舒展状态, 否则异质衬底带来的热失配会损害薄膜晶体质量,而且要求异质衬底和粘结层都必须耐高温; (4)比表面积增大,对表面、界面钝化要求提高,但是由于支撑衬底的不耐高温局限性,难 以在低温下获得高质量的结区、钝化界面。

发明内容

本发明针对现有技术存在的上述不足,提出了一种基于层转移的晶硅薄膜的制备方法。 本方法结合了晶体硅的高晶体质量和薄膜的低成本两大重要因素:以单晶硅为母衬底,通过 微纳加工方法制备出周期性硅棒阵列,随后在其表面生长一层SiO2/Si3N4的阻挡层,通过选 择性刻蚀使得硅棒顶部的硅核裸露出来,然后以裸露的硅核为籽晶或者成核位置,在高温化 学气相沉积系统中选择性外延生长,硅核生长长大、合并,形成连续薄膜并继续增厚,最后 通过选择性刻蚀将薄膜剥离。这样所生长的薄膜能够继承母衬底的晶体质量,因此保证薄膜 具有高少子寿命和长少子扩散长度;同时衬底经过适当的处理又可以重复使用,降低了生产 成本。

为实现上述目的及其他相关目的,本发明提供一种基于层转移的晶硅薄膜的制备方法, 至少包括以下步骤:

1)提供一单晶硅衬底,于所述单晶硅衬底表面形成用于制作周期性棒阵列的掩膜,然后 采用化学湿法刻蚀或干法刻蚀工艺于所述单晶硅衬底上形成周期性的硅棒阵列;

2)于所述单晶硅衬底表面及硅棒阵列表面形成硅外延生长的阻挡层;

3)采用选择性刻蚀工艺去除所述硅棒阵列顶部的阻挡层,暴露所述硅棒阵列顶部的硅, 形成硅核阵列;

4)以所述硅核阵列作为外延生长的籽晶或者成核位置,采用化学气相沉积法于所述硅棒 阵列顶部位置形成连续的硅膜;

5)剥离所述硅膜,将其转移至一预设基底。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤1)中,采用紫 外曝光微纳工艺形成所述用于制作周期性棒阵列的掩膜。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤1)采用金或银 作为催化剂,HF及H2O2的组合溶液作为腐蚀液进行所述的化学湿法刻蚀。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤1)所述的干法 刻蚀工艺为感应耦合等离子体刻蚀工艺。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,所述阻挡层为SiO2层 或Si3N4层。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤3)包括以下步 骤:

3-1)于所述硅棒阵列中填充光刻胶,露出所述硅棒阵列顶部的阻挡层;

3-2)采用等离子体刻蚀将所述硅棒阵列顶部的阻挡层去除,露出所述硅棒阵列顶部的硅;

3-3)去除所述光刻胶。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤4)中,以三氯 氢硅作为硅源,H2作为还原气体,于衬底温度900~1100℃下形成连续的硅膜。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,步骤5)采用KOH溶 液选择性刻蚀剥离所述硅膜。

作为本发明的基于层转移的晶硅薄膜的制备方法的一种优选方案,还包括在所述硅膜剥 离后,将所述硅棒阵列经清洗及还原处理后进行重复使用的步骤。

如上所述,本发明提供一种基于层转移的晶硅薄膜的制备方法,至少包括以下步骤:1) 提供一单晶硅衬底,于所述单晶硅衬底表面形成用于制作周期性棒阵列的掩膜,然后采用化 学湿法刻蚀或干法刻蚀工艺于所述单晶硅衬底上形成周期性的硅棒阵列;2)于所述单晶硅衬 底表面及硅棒阵列表面形成阻挡层;3)采用选择性刻蚀工艺去除所述硅棒阵列顶部的阻挡层, 暴露所述硅棒阵列顶部的硅,形成硅核阵列;4)以所述硅核阵列作为外延生长的籽晶或者成 核位置,采用化学气相沉积法于所述硅棒阵列顶部位置形成连续的硅膜;5)剥离所述硅膜, 将其转移至一预设基底。

本发明是以单晶硅片为母衬底,所生长薄膜能够继承母板的晶体质量,保证了薄膜的高 晶体质量;薄膜剥离后,衬底经过简单处理又可以重复使用,同时气相化学沉积薄膜生长工 艺简单,可有效地降低生产成本。此外,阵列衬底热、力学性能稳定,薄膜可以依附母衬底 进行有效制绒、高温氧化钝化界面、沉积减反涂层、光刻制备前电极等,可大幅降低高效薄 膜电池结构的加工难度;可以通过控制籽晶取向和排列方式,以及薄膜生长温度、气氛条件, 在薄膜表面自发形成绒面结构,进而可以通过薄膜生长原位形成结区,而不是后续POCl3扩 散工艺制作结区,简化电池制作工艺。还可以利用剥离面的织构结构作为电池背面光反射结 构,增加光路径长度,提高电池效率;薄膜剥离转移后,只需背面钝化、背面增反涂层、背 电极制作等工艺,无高温工艺需要,适合柔性电池的实现;薄膜在所有工艺过程中,都有支 撑衬底,适合大面积尺度电池制作。

附图说明

图1~图4显示为本发明的基于层转移的晶硅薄膜的制备方法步骤1)所述呈现的示意图。

图5显示为本发明的基于层转移的晶硅薄膜的制备方法步骤2)所述呈现的示意图。

图6~图8显示为本发明的基于层转移的晶硅薄膜的制备方法步骤3)所述呈现的示意图。

图9显示为本发明的基于层转移的晶硅薄膜的制备方法步骤4)所述呈现的示意图。

图10显示为本发明的基于层转移的晶硅薄膜的制备方法步骤5)所述呈现的示意图。

元件标号说明

101                     单晶硅衬底

102                     掩膜

103                     硅棒阵列

104                     阻挡层

105                     光刻胶

106                     硅膜

具体实施方式

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加 以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精 神下进行各种修饰或改变。

请参阅图1~图10。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的 基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及 尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型 态也可能更为复杂。

如图1~图10所示,本实施例提供一种基于层转移的晶硅薄膜的制备方法,至少包括以 下步骤:

如图1~图4所示,首先进行步骤1),提供一单晶硅衬底101,于所述单晶硅衬底101 表面形成用于制作周期性棒阵列的掩膜102,然后采用化学湿法刻蚀或干法刻蚀工艺于所述 单晶硅衬底101上形成周期性的硅棒阵列103。

作为实例,采用紫外曝光微纳工艺形成所述用于制作周期性棒阵列的掩膜102。

作为实例,采用金或银作为催化剂,HF及H2O2的组合溶液作为腐蚀液进行所述的化学 湿法刻蚀。

作为实例,所述的干法刻蚀工艺为感应耦合等离子体刻蚀工艺。

本实施例以化学湿法刻蚀为例。由于在金或银的催化作用下,金或银与硅接触的界面腐 蚀速率远大于没有金或银接触的界面,在表面具有图案化掩膜的单晶硅衬底101上,先通过 热蒸发在表面沉积一层30nm~60nm的金膜。随后将硅片放入盛有HF和H2O2的聚四氟乙烯 溶液的容器中,在常温下静止一段时间(约2h)后取出。用大量的去离子水冲洗,最后用氮气 吹干,形成的硅棒阵列103的高度在10μm。

如图5所示,然后进行步骤2),于所述单晶硅衬底101表面及硅棒阵列103表面形成 硅外延生长的阻挡层104。

作为示例,所述阻挡层104为SiO2层或Si3N4层。

作为示例,所述的SiO2覆盖层的生长是通过1100℃干氧热氧化获得;

作为示例,所述的Si3N4覆盖层采用低压化学气相沉积方法,以三氯硅烷和氨气作为硅源 和氮源,在800~1000℃生长获得。

在硅片表面和阵列棒表面形成致密、均匀的硅生长阻挡层104是后续实现籽晶选择性生 长的关键。本实施以热氧化法制备SiO2为例:将所述硅棒阵列103放置在管式炉中,通入纯 氧O2,在1100℃条件下保持5h;此时得到的SiO2厚度在300nm左右。

如图6~图8所示,接着进行步骤3),采用选择性刻蚀工艺去除所述硅棒阵列103顶部 的阻挡层104,暴露所述硅棒阵列103顶部的硅,形成硅核阵列。

作为示例,包括以下步骤:

3-1)于所述硅棒阵列103中填充光刻胶105,露出所述硅棒阵列103顶部的阻挡层104, 如图6所示;

3-2)采用等离子体刻蚀将所述硅棒阵列103顶部的阻挡层104去除,露出所述硅棒阵列 103顶部的硅,如图7所示;

3-3)去除所述光刻胶105,如图8所示。

如图9所示,然后进行步骤4),以所述硅核阵列作为外延生长的籽晶或者成核位置, 采用化学气相沉积法于所述硅棒阵列103顶部位置形成连续的硅膜106;

作为示例,以三氯氢硅作为硅源,H2作为还原气体,于衬底温度900~1100℃下形成连续 的硅膜106。

通过控制生长气体浓度、气压、衬底温度、籽晶阵列的排列方式、取向和生长时间等条 件,控制硅膜106的生长过程。获得完整无空洞硅膜106,硅膜106的最终厚度控制在10μm ~60μm。

如图10所示,最后进行步骤5),剥离所述硅膜106,将其转移至一预设基底。

作为示例,所述将硅膜106转移的工艺是以柔性转移衬底PDMS(聚二甲基硅氧烷)和 PI(聚亚酰胺)作为预设基底,使用KOH溶液选择性刻蚀剥离。

作为示例,还包括在所述硅膜106剥离后,将所述硅棒阵列103经清洗及还原处理后进 行重复使用的步骤。由于所述的硅棒阵列103衬底在空气中容易吸附一层外来物质,或是在 空气中氧化在硅棒顶部形成几纳米的氧化层,在本实施例中,将剥离后的母衬底用浓 H2SO4/H2O2清洗,并用大量的去离子水冲洗、氮气吹干,再在低真空H2气氛下还原棒顶部 薄氧化层(几纳米厚),恢复选择性生长活性后的衬底再利用于外延生长。

综上所述,本发明提供一种基于层转移的晶硅薄膜的制备方法,至少包括以下步骤:1) 提供一单晶硅衬底101,于所述单晶硅衬底101表面形成用于制作周期性棒阵列的掩膜102, 然后采用化学湿法刻蚀或干法刻蚀工艺于所述单晶硅衬底101上形成周期性的硅棒阵列103; 2)于所述单晶硅衬底101表面及硅棒阵列103表面形成阻挡层104;3)采用选择性刻蚀工 艺去除所述硅棒阵列103顶部的阻挡层,暴露顶部的硅,形成硅核阵列;4)以所述硅核阵列 作为外延生长的籽晶或者成核位置,采用化学气相沉积法于所述硅棒阵列103顶部位置形成 连续的硅膜106;5)剥离所述硅膜106,将其转移至一预设基底。

本发明是以单晶硅片为母衬底,所生长薄膜能够继承母板的晶体质量,保证了薄膜的高 晶体质量;薄膜剥离后,衬底经过简单处理又可以重复使用,同时气相化学沉积薄膜生长工 艺简单,可有效地降低生产成本。此外,阵列衬底热、力学性能稳定,薄膜可以依附母衬底 进行有效制绒、高温氧化钝化界面、沉积减反涂层、光刻制备前电极等,可大幅降低高效薄 膜电池结构的加工难度;可以通过控制籽晶取向和排列方式,以及薄膜生长温度、气氛条件, 在薄膜表面自发形成绒面结构,进而可以通过薄膜生长原位形成结区,而不是后续POCl3扩 散工艺制作结区,简化电池制作工艺。还可以利用剥离面的织构结构作为电池背面光反射结 构,增加光路径长度,提高电池效率;薄膜剥离转移后,只需背面钝化、背面增反涂层、背 电极制作等工艺,无高温工艺需要,适合柔性电池的实现;薄膜在所有工艺过程中,都有支 撑衬底,适合大面积尺度电池制作。所以,本发明有效克服了现有技术中的种种缺点而具高 度产业利用价值。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡 所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等 效修饰或改变,仍应由本发明的权利要求所涵盖。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号