首页> 外文OA文献 >On the Bone Tissue Response to Surface Chemistry Modifications of Titanium Implants
【2h】

On the Bone Tissue Response to Surface Chemistry Modifications of Titanium Implants

机译:骨组织对钛种植体表面化学修饰的响应

摘要

Background: Surface properties of titanium implants play an important role in osseointegration. From 1990, a lot of engineering techniques have been applied to dental implant productions for improving their clinical performance by changing surface properties. In particular, surface chemistry modification enhanced the strength and speed of implant integration in bone and has become a marketing trend in the production of new implants. However, it is not clearly understood why and how strongly surface chemistry modifications reinforce the osseointegration of titanium. Hence, it is required to investigate the bone response to surface chemistry modifications of titanium for a better understanding of the roles of surface chemistry on the osseointegration response.Aims: The present thesis aims to investigate the bone response to chemistry-modified titanium implants. In particular, our purpose is to better understand the effect of surface chemistry on the osseointegration of titanium implants.Materials and methods: Clinical implants, such as TiUnite, Osseotite, OsseoSpeed and SLA were analyzed. Surface engineering methods include plasma immersion ion implantation and deposition (PIIID) and micro arc oxidation (MAO). Using these techniques, Mg-, Ca- and O-incorporated titanium surfaces were prepared. Surface chemistry was analyzed by X-ray photoelectron spectroscopy and auger electron spectroscopy. For topographical analyses, we used scanning electron microscopy and optical interferometry. A total of 136 screw-shape implants were inserted into rabbit tibiae and the bone responses were evaluated after 3, 6 and 10 weeks of healing. Biomechanical strengths at the bone implant interface were measured by removal torque. Bone tissue responses were evaluated by quantifying bone metal contact, bone area and new bone formation from undecalcified cut and ground sections.Results: Surface chemistry of the Osseotite, OsseoSpeed and SLA implants showed mainly TiO2, but surface topography varied with modification methods in use. In contrast, the TiUnite, prepared by an electrochemical oxidation technique, displayed porous structures as well as P-incorporation to the oxide layer. The PIIID process changed surface chemistry of titanium with plasma resources, but negligibly altered surface topography at the nanometer scale. The atom concentration of plasma ion increased with ion dose, but decreased with acceleration voltage. The MAO process not only incorporated Mg and Ca ions into titanium surfaces, but also produced microporous structures on the surface. Furthermore, the MAO process controlled the calcium concentration of titanium implants without significant change of chemical bonding states of Ca in titanium oxide. In vivo results showed that Mg-incorporated implants produced by the MAO technique increased the biomechanical bonding strength and osseointegration rate compared to non-incorporated titanium surfaces. Furthermore, Mg-incorporated implants produced by the PIIID demonstrated a significant increase of biomechanical bonding strength, bony contact and new bone formation compared to O-incorporated implants. Ca 4.2% and Ca 6.6% containing implants revealed no significant differences in biomechanical and histomorphometrical measurement outcomes in rabbit tibiae.Conclusions: The surface chemistry and topography of clinical and experimental implants were greatly dependent of surface engineering methods. In particular, the PIIID technique modified surface chemistry of titanium implants by tailoring plasma source with negligible alternation of surface topography at the nanometer scale, thus enabling the investigation of the effect of bioactive implant surface chemistry on the bone response. Using the PIIID and MAO techniques, we found that the Mg-incorporation to titanium significantly enhanced the bone responses to implant surfaces. Furthermore, the Mg-incorporated titanium oxide chemistry played an important role on the strength and speed of osseointegration. Choosing one of two calcium concentrations had no significant influence on the bone response to the Ca-incorporated titanium implants.
机译:背景:钛植入物的表面特性在骨整合中起着重要作用。从1990年开始,许多工程技术已应用于牙科植入物的生产,以通过改变表面特性来改善其临床性能。特别地,表面化学改性增强了植入物在骨中的整合强度和速度,并已成为生产新植入物的市场趋势。然而,尚不清楚为什么表面化学改性会增强钛的骨结合以及为何如此强烈。因此,有必要研究骨骼对钛表面化学修饰的反应,以更好地了解表面化学在骨整合反应中的作用。目的:本论文旨在研究骨骼对化学修饰的钛植入物的反应。特别是,我们的目的是更好地了解表面化学对钛植入物骨整合的影响。材料和方法:分析了诸如TiUnite,Osseotite,OsseoSpeed和SLA等临床植入物。表面工程方法包括等离子体浸没离子注入和沉积(PIIID)和微弧氧化(MAO)。使用这些技术,制备了掺有Mg,Ca和O的钛表面。表面化学通过X射线光电子能谱和俄歇电子能谱分析。对于地形分析,我们使用了扫描电子显微镜和光学干涉仪。将总共​​136颗螺钉形植入物插入兔胫骨,并在愈合3、6和10周后评估骨反应。通过去除扭矩来测量骨植入物界面处的生物力学强度。通过量化未脱钙的切割和磨削部分的骨金属接触,骨面积和新骨形成来评估骨组织反应。结果:Osseotite,OsseoSpeed和SLA植入物的表面化学成分主要显示TiO2,但表面形态因使用的修饰方法而异。相反,通过电化学氧化技术制备的TiUnite显示出多孔结构以及P结合到氧化物层中。 PIIID工艺利用等离子体资源改变了钛的表面化学性质,但在纳米尺度上几乎可以改变表面形貌。等离子体离子的原子浓度随离子剂量的增加而增加,但随加速电压的降低而减小。 MAO工艺不仅将Mg和Ca离子掺入钛表面,而且在表面上产生了微孔结构。此外,MAO工艺可控制钛植入物的钙浓度,而不会显着改变氧化钛中Ca的化学键态。体内结果表明,与未掺入钛的钛表面相比,通过MAO技术生产的掺入镁的植入物提高了生物力学结合强度和骨整合率。此外,与掺有O的植入物相比,由PIIID生产的掺有Mg的植入物显示出生物力学结合强度,骨接触和新骨形成的显着增加。含钙4.2%和含钙6.6%的植入物在兔胫骨的生物力学和组织形态测量结果方面无显着差异。结论:临床和实验植入物的表面化学和形貌在很大程度上取决于表面工程方法。尤其是,PIIID技术通过定制等离子体源,使纳米级表面形貌的变化可忽略不计,从而改变了钛植入物的表面化学性质,从而能够研究生物活性植入物表面化学性质对骨骼反应的影响。使用PIIID和MAO技术,我们发现向钛中掺入Mg可以显着增强骨骼对植入物表面的反应。此外,掺有镁的氧化钛化学作用对骨整合的强度和速度也起着重要作用。选择两个钙浓度之一对骨骼对钙结合的钛植入物的反应没有显着影响。

著录项

  • 作者

    Kang Byung-Soo;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号