首页> 外文OA文献 >Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis
【2h】

Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

机译:Ni5Ga3纳米粒子低温失活原因作为甲醇合成催化剂

摘要

In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni-Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed that the highest methanol yield is obtained with a Ni5Ga3 alloy exposed to a 25% CO2 – 75% H2 reaction mixture at 210 °C [2]. Under these experimental conditions, the catalyst is found to lose 35% of its activity after 20 hours of continuous testing at both 1 and 5 Bars. Although in situ XRD and EXAFS studies [3] confirm dealloying as responsible for high temperature (T 300 °C) deactivation, this does not explain the activity loss in the low temperature regime (T 300 °C).This work presents an extensive study on the low temperature (T = 200, 210, 250 °C) deactivation of silica supported Ni5Ga3 nanoparticles as catalyst for methanol production. Synthesis, followed by deactivation and a series of regeneration steps at increasing temperature in pure H2 has been carried out in a fixed-bed reactor connected to a gas chromatography system. In each regeneration step, CH4 is generated and the activity of the catalyst is subsequently increased, suggesting the presence of carbon containing species blocking the active sites of the alloy nanoparticles (Figure 1). Carbon deposition has furthermore been investigated by temperature programmed oxidation (TPO) of a deactivated catalyst in a fixed-bed reactor connected to a mass spectrometer. CO2 and H2O evolution at T 200 °C confirms the presence of carbon containing species on the catalyst. Finally, an electron microscopy study aiming at direct carbon probing has been performed, requiring the synthesis of a new support consisting of 200 nm Stöber silica spheres [4]. Unlike porous silica, on this new support Ni5Ga3 nanoparticles becomes directly exposed to the electron beam (Figure 2) allowing us to obtain high resolution TEM images and perform more accurate electron energy loss spectroscopy (EELS) measurements.
机译:为了寻找能够与化石燃料竞争的替代能源,甲醇合成可以代表一种现实的解决方案,以存储由电解或光致水分解产生的“绿色”氢。最近,密度泛函理论(DFT)计算[1]提出了使用Ni-Ga合金作为合成气混合物生产甲醇的活性催化剂,并且使用初始润湿浸渍技术从镍溶液中制备了负载在高度多孔二氧化硅上的Ni-Ga纳米颗粒。和硝酸镓[2]。在固定床反应器中进行的测试表明,将Ni5Ga3合金暴露于210°C的25%CO2 – 75%H2反应混合物中可获得最高的甲醇产率[2]。在这些实验条件下,发现在1巴和5巴下连续测试20小时后,催化剂的活性下降了35%。尽管原位XRD和EXAFS研究[3]证实脱合金是造成高温(T> 300°C)失活的原因,但这不能解释低温状态(T <300°C)时的活性损失。二氧化硅负载的Ni5Ga3纳米颗粒作为甲醇生产催化剂的低温(T = 200、210、250°C)的失活研究。在与气相色谱系统连接的固定床反应器中,进行了合成,然后在纯氢气中在升高的温度下失活并进行了一系列再生步骤。在每个再生步骤中,都会生成CH4并随后提高催化剂的活性,这表明存在阻塞合金纳米颗粒活性位点的含碳物质(图1)。此外,通过在连接到质谱仪的固定床反应器中通过失活催化剂的温度程序化氧化(TPO)研究了碳沉积。 T> 200°C时CO2和H2O的逸出证实了催化剂上存在含碳物质。最后,已经进行了针对直接碳探测的电子显微镜研究,要求合成由200 nmStöber二氧化硅球组成的新载体[4]。与多孔二氧化硅不同,在这种新载体上,Ni5Ga3纳米粒子直接暴露于电子束中(图2),这使我们可以获得高分辨率的TEM图像并执行更准确的电子能量损失谱(EELS)测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号