首页> 外文OA文献 >Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations
【2h】

Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations

机译:微流控芯片中的声共振:全图像微pIV实验和数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work reports on protein transport phenomena discovered in partitioning experiments with a novel setup for continuous-flow two-phase electrophoresis consisting of a microchannel in which a phase boundary is formed in flow direction. Proteins can be partitioned exploiting their affinity to different aqueous phases in two-phase systems. This separation process may be enhanced or extended by applying an electric field perpendicular to the phase boundary. In this context, microsystems offer new possibilities, as interfacial forces usually dominate over volume forces, thus allowing a superior control of the formation and arrangement of liquid/liquid phase boundaries. The two immiscible phases which are injected separately into the microchannel are taken from a polyethylene glycol (PEG)–dextran system. The side walls of the channel are partially made of gel material which serves as an ion conductor and decouples the channel from the electrodes, thus preventing bubble generation inside the separation channel. The experiments show that the electrophoretic transport of proteins between the laminated liquid phases is characterized by a strong asymmetry. When bovine serum albumin (BSA) is introduced into the PEG-rich phase, it can easily be transferred into the dextran-rich phase via an applied electric field of low strength or just by diffusion. In the reverse case, up to a certain field strength the transfer to the opposing phase is strongly inhibited. Only if the field strength is further increased will the BSA molecules leave the dextran-rich phase almost completely.
机译:这项工作报告了在分配实验中发现的蛋白质转运现象,该实验采用了一种新型的连续流两相电泳装置,该装置由一个微通道组成,在该通道中沿流动方向形成了一个相界。利用蛋白质对两相系统中不同水相的亲和力,可以对蛋白质进行分区。可以通过施加垂直于相界的电场来增强或扩展该分离过程。在这种情况下,微系统提供了新的可能性,因为界面力通常会超过体积力,因此可以更好地控制液相边界/液相边界的形成和排列。分别注入微通道的两个不混溶相取自聚乙二醇(PEG)-葡聚糖系统。通道的侧壁部分由凝胶材料制成,该凝胶材料用作离子导体并将通道与电极分离,从而防止在分离通道内部产生气泡。实验表明,蛋白质在层状液相之间的电泳转运具有很强的不对称性。将牛血清白蛋白(BSA)引入富含PEG的相时,可以通过施加低强度电场或仅通过扩散将其轻松转移到富含右旋糖酐的相中。在相反的情况下,在达到一定的场强之前,强烈禁止转移到相反的相。只有当场强进一步提高时,BSA分子才会几乎完全离开富葡聚糖的相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号