首页> 外文OA文献 >Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas Reinhardtii
【2h】

Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas Reinhardtii

机译:莱茵衣藻悬浮液中硫缺乏光合作用和产氢的机理模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms
机译:诸如莱茵衣藻(Chlamydomonas reinhardtii)之类的单细胞绿色藻类经由铁-氢酶产生氢气的能力是众所周知的。然而,对氧敏感的氢化酶以这样的方式与光合链紧密连接,使得需要暂时分离氢和氧的产生以维持持续的光产生。在光照下,已显示出脱硫可通过部分钝化O2的释放活性来适应氢气的产生,从而在密封培养物中导致厌氧菌的繁殖。随着这些方面的耦合以及系统的复杂化,数学方法可能具有重要的价值,因为它们可能会揭示出改进的甚至最佳的方案,以使制氢最大化。在这里,系统的机械模型是通过考虑基本路径和过程而构建的。硫在光合作用中的作用(通过PSII)以及内源性底物的存储和分解代谢,以及培养物密度的生长和衰退,被明确建模,以描述和探索导致硫缺乏期间产生H2的复杂相互作用。尽可能根据实验数据确定或估算功能形式和参数值。将该模型与已发表的实验研究进行了比较,令人鼓舞的是,发现了氢气产率和引发时间趋势的定性一致性。然后将其用于探测最佳的外部硫和氢气生产的照明条件,这些条件根据所需的最大气体产量或初始生产率而有所不同。该模型构成了用于研究新颖的硫循环机制的强大理论工具,该机制最终可用于改善微生物生产氢气的商业可行性

著录项

  • 作者

    Williams C. R.; Bees M. A.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号