首页> 外文OA文献 >Methods for designing the next generation of aircraft architectures using topology optimisation
【2h】

Methods for designing the next generation of aircraft architectures using topology optimisation

机译:使用拓扑优化设计下一代飞机架构的方法

摘要

The need from energy efficient transportation has resulted in a growing interest in new aircraft configurations such as the Blended Wing Body. There is very little collective knowledge on the optimal structural layouts of these aircraft, and the paradigms applied to conventional aircraft may not be applicable. Topology optimisation is the logical tool to employ in this type of situation, as its generality removes the need for any assumption of what the structure should be. Several barriers exist that stand in the way of topology optimisation’s use in designing aircraft structural architectures. Firstly, the displacements caused by spanwise bending of the wing are large compared to those caused by twisting and localised deformation of the wing. Therefore, the typical minimum compliance formulation of the topology optimisation problem favours structures that improve bending stiffness. There are also considerable difficulties associated with the implementation of buckling constraints in topology optimisation. This thesis explores these issues, and methods are proposed for circumventing them. The effect of problem formulation on optimal topologies is demonstrated through the use of various design and manufacturing constraints, SIMP penalisation factors, and load cases. Approaches for reducing the significance of spanwise bending in the topology optimisation problem are evaluated and shown to be capable of generating designs that resist bending, torsion and localised deformation of the wing. Methods are then proposed for including topology optimisation in a framework for designing aircraft structural architectures, along with shape and sizing optimisation. Shape optimisation is used to find optimal rib locations and orientations for structural stability. The inclusion of these ribs as non-designable structures in the topology optimisation problem is shown to have a substantial effect on the optimal material distributions, due to the load carrying capacity of the ribs. The developed methods are applied to designing the structural architecture of a Blended Wing Body UAV, and are shown to offer potential reductions in structural mass.
机译:节能运输的需求已导致人们对新型飞机配置(例如,混合机翼机身)的兴趣日益浓厚。关于这些飞机的最佳结构布局的集体知识很少,因此应用于传统飞机的范例可能不适用。拓扑优化是在这种情况下使用的逻辑工具,因为它的普遍性消除了对结构应该是什么的任何假设。存在一些障碍,这些障碍阻碍了拓扑优化在设计飞机结构时的使用。首先,与由机翼的扭曲和局部变形引起的位移相比,由机翼的翼展方向弯曲引起的位移要大。因此,拓扑优化问题的典型最小顺应性公式倾向于使用可提高弯曲刚度的结构。在拓扑优化中实现屈曲约束也存在相当大的困难。本文探讨了这些问题,并提出了解决这些问题的方法。通过使用各种设计和制造约束,SIMP惩罚因子和工况,证明了问题制定对最佳拓扑的影响。评估了减少翼展方向弯曲在拓扑优化问题中的重要性的方法,这些方法显示出能够生成抵抗机翼弯曲,扭转和局部变形的设计的方法。然后提出了将拓扑优化包括在设计飞机结构结构的框架中,以及形状和尺寸优化的方法。形状优化用于找到最佳的肋骨位置和方向,以实现结构稳定性。由于肋的承载能力,在拓扑优化问题中将这些肋作为不可设计的结构包括在内对最佳材料分布具有重大影响。所开发的方法被应用于设计混合翼机无人机的结构,并被证明可以减少结构质量。

著录项

  • 作者

    Eves James;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号