首页> 外文OA文献 >Modeling and simulation of axisymmetric stagnation flames
【2h】

Modeling and simulation of axisymmetric stagnation flames

机译:轴对称滞止火焰的建模与仿真

摘要

Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties.ududIn the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods.ududThe present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions. Detailed analysis reveals that flame speed is sensitive to even slight flame front curvature as well as its finite extension in the radial direction. Neither of these can be incorporated in one-dimensional flow modeli
机译:层流火焰建模是湍流燃烧研究中的重要元素。湍流燃烧模型的准确性在很大程度上取决于我们对层流火焰及其在许多情况下的行为的理解。我们对燃烧的了解程度只能通过模型​​描述和预测燃烧现象的程度来衡量。 GRI-Mech 3.0是最常用的甲烷燃烧模型之一。然而,即使经过多次尝试验证模型或量化不确定性,该模型对反应流现象的描述程度仍不确定。 ud ud在本研究中,在不同空气动力学和热力学条件下,对层流火焰的行为进行了数值研究。停滞流配置。为了使这种数值研究成为可能,重新设计了光谱元素法以适应甲烷反应流中的大密度变化。此外,针对光谱元素方法的轴对称基础函数集也得到了开发,它满足了轴附近的正确行为,并且开发了有效的积分技术来在合理的计算时间内准确地对轴对称反应流进行建模。数值方法是使用面向对象的编程技术实现的,然后使用几种不同的验证方法对所得的计算机程序进行验证。 ud ud然后,本研究通过直接仿真显示了与常用的GRI-Mech 3.0化学动力学模型的差异。可以直接与实验数据进行比较的实验室火焰。结果表明,基于GRI-Mech 3.0的甲烷燃烧模型适用于接近化学计量比的甲烷-空气混合物。但是,GRI-Mech 3.0导致对稀薄混合物的层流火焰速度有过高的预测,而对富含混合物的层流却有过低的预测。该结果与先前的工作稍有不同,在先前的工作中,实验数据与一维数值解进行了比较。详细的分析表明,火焰速度对甚至很小的火焰前曲率及其在径向上的有限延伸都敏感。这些都不能合并到一维流模型中

著录项

  • 作者

    Sone Kazuo;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号