首页> 外文OA文献 >On the development of a partial vibrational analysis within a QM/MM approach
【2h】

On the development of a partial vibrational analysis within a QM/MM approach

机译:关于Qm / mm方法中部分振动分析的发展

摘要

In molecular modeling extended systems are often only partially optimized in order to restrict the computational cost. For instance in a first step the whole system is optimized at a low level-of-theory, and in the next step only part of the atoms, usually the chemically active region, is optimized at a high level-of-theory, while atoms in the passive region are kept fixed at their original positions. However, partially optimized geometries are non-equilibrium structures and the standard normal mode analysis (NMA) shows some serious defects, e.g. spurious imaginary frequencies may appear. In the Partial Hessian Vibrational Analysis [1],[2] these defects are surmounted by giving the fixed part an infinite mass. We propose a new model, the Mobile Block Hessian (MBH) approach, which takes into account the finite mass of the fixed block and avoids the spurious frequencies and the coordinate dependence [3]. The approach was generalized to the case of several mobile blocks. The MBH has been validated by comparing eigenfrequencies and eigenvectors, vibrational entropy and enthalpy, and recently reaction rate constants [4], with remarkably satisfying results. One of the main advantages is that the implementation of the MBH allows a considerable reduction of computer time [5]. After several tests with smaller QM systems, the method is now also included in the CHARMM package, allowing the simulation of more extended (bio)systems. The next step is combining the MBH approach with QM/MM, currently in a developing stage, which will broaden the range of applications. MBH in QM/MM is a very promising methodology for extended systems. Whereas a full normal mode analysis is unfeasible even if only the MM part of the system increases, because of the high number of expensive second derivatives of the QM/MM interaction terms in the Hamiltionian, the MBH can considerably reduce this cost, thereby opening the path to vibrational analysis in extended QM/MM systems. [1] J. D. Head, Int. J. of Quantum Chem. 65, 827 (1997) [2] H. Li and J. H. Jensen, Theor. Chem. Accounts. 107(4): 211-219 (2002) [3] A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J. Chem. Phys. 126, 224102 (2007) [4] A. Ghysels, V. Van Speybroeck, T. Verstraelen, D. Van Neck, M. Waroquier, J. Chem. Theor. Comp. 4 (4), 614-625 (2008) [5] A. Ghysels, D. Van Neck, M. Waroquier, J. Chem. Phys. 127, 164108 (2007)
机译:在分子建模中,扩展系统通常仅部分优化以限制计算成本。例如,第一步是在低理论水平下优化整个系统,而在下一步中,只有一部分原子(通常是化学活性区域)在高理论水平下进行优化,而原子在无源区域中保持固定在其原始位置。但是,部分优化的几何形状是非平衡结构,标准的正常模式分析(NMA)显示出一些严重的缺陷,例如可能出现虚假的虚假频率。在偏黑森振动分析[1],[2]中,通过赋予固定部分无限质量来克服这些缺陷。我们提出了一种新模型,即移动块粗麻布(MBH)方法,该模型考虑了固定块的有限质量,避免了杂散频率和坐标依赖性[3]。该方法被推广到几个移动块的情况。通过比较特征频率和特征向量,振动熵和焓以及最近的反应速率常数[4],已经验证了MBH的效果,结果令人满意。主要优点之一是MBH的实现可显着减少计算机时间[5]。在使用较小的QM系统进行了几次测试之后,该方法现在也包含在CHARMM软件包中,从而可以模拟更多扩展的(生物)系统。下一步是将MBH方法与QM / MM相结合,目前正处于开发阶段,这将扩大应用范围。 QM / MM中的MBH是用于扩展系统的非常有前途的方法。即使仅增加系统的MM部分,也无法进行完全的正常模式分析,但是由于汉米顿语中QM / MM交互项的昂贵的二阶导数数量众多,MBH可以大大降低此成本,从而打开了扩展QM / MM系统中振动分析的路径。 [1] J. D. Head,Int。量子化学杂志。 65,827(1997)[2] H. Li和J. H. Jensen,Theor。化学帐户。 107(4):211-219(2002)[3] A. Ghysels,D。Van Neck,V。Van Speybroeck,T。Verstraelen,M。Waroquier,J。Chem。物理126,224102(2007)[4] A. Ghysels,V. Van Speybroeck,T. Verstraelen,D.Van Neck,M.Waroquier,J. Chem。理论。比较4(4),614-625(2008)[5] A. Ghysels,D。Van Neck,M。Waroquier,J。Chem。物理127,164108(2007)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号