首页> 外文OA文献 >Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas
【2h】

Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

机译:托卡马克限制器等离子体中主要SOL平行热通量宽度的多机缩放

摘要

As in many of today's tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, ${{q}_{||}}$ in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as ${{q}_{||}}={{q}_{0}}ext{exp} ~left(-r/lambda _{q}^{ext{omp}}ight)$ , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, $lambda _{q}^{ext{omp}}$ . The initial choice of $lambda _{q}^{ext{omp}}$ , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with $R=ext{0}ext{.4--2}ext{.8},ext{m},,{{B}_{0}}=ext{1}ext{.2--7}ext{.5},ext{T},,{{I}_{ext{p}}}=ext{9--2500},ext{kA}.$ Measurements of $lambda _{q}^{ext{omp}}$ in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar predicted values of $lambda _{q}^{ext{omp}}$ mapped to the outside midplane. The engineering scaling with the highest statistical significance, $lambda _{q}^{ext{omp}}=10{{left({{P}_{ext{tot}}}/V,left(ext{W},{{ext{m}}^{-3}}ight)ight)}^{-0.38}}{{left(a/R/kappa ight)}^{1.3}}$ , dependent on input power density, aspect ratio and elongation, yields $lambda _{q}^{ext{omp}}$   =  [7, 4, 5] cm for ${{I}_{ext{p}}}$   =  [2.5, 5.0, 7.5] MA, the three reference limiter plasma currents specified in the ITER heat and nuclear load specifications. Mapped to the inboard midplane, the worst case (7.5 MA) corresponds to $lambda _{q}^{ext{imp}}sim 57pm 14$ mm, thus consolidating the 50 mm width used to optimize the FW panel toroidal shape.
机译:就像今天的许多托卡马克一样,ITER中的等离子体启动将以限制器配置在内部或外部中平面第一壁(FW)上执行。坚固的铍装甲ITER FW面板呈环形,可保护面板间不对准,与纯圆柱形表面相比,增加了沉积的功率通量密度。因此,应针对刮除层(SOL)中的平行热通量的给定径向分布$ {{qq_ {||}}} $优化选定的形状,以确保最佳功率散布。对于局限在托卡马克外壁上的等离子体,通常观察到此轮廓以指数形式衰减,即$ {{qq__ ||}} = {{q} _ {0}} text {exp}〜 left(- r / lambda _ {q} ^ { text {omp}} right)$,或者,对于具有双指数衰减的内壁限制器等离子体,包括急剧的近SOL特征和较宽的主SOL宽度,$ lambda _ {q} ^ { text {omp}} $。最初选择$ lambda _ {q} ^ { text {omp}} $是至关重要的,这对于确保按照ITER方案设计的计划实现当前的上升或下降至关重要。一个极受限制的L型偏滤器数据集,它使用外部偏滤器目标上的红外热像仪测量推断出主等离子体中平面处的热通量宽度。在国际托卡马克物理活动的主持下进行的一项专门的多机欧姆和L模式限制器等离子体研究现已大大改善了这种不令人满意的情况,该研究涉及11个托卡马克,其参数覆盖范围很广,其中$ R = text {0 } text {.4--2} text {.8} , text {m},,{{B} _ {0}} = text {1} text {.2--7} text {.5} , text {T},,{{I} _ { text {p}}} = text {9--2500} , text {kA}。$测量值$数据库中的 lambda _ {q} ^ { text {omp}} $仅在所有设备上使用各种快速往复的Langmuir探针在各种极向性位置进入血浆的所有设备上制成,但大多数位于现场。数据库的统计分析显示了九种合理的工程设计和无量纲缩放。但是,所有产量都将相似的$ lambda _ {q} ^ { text {omp}} $预测值映射到外部中平面。具有最高统计意义的工程缩放比例,$ lambda _ {q} ^ { text {omp}} = 10 {{ left({{P} _ { text {tot}}} / V , left ( text {W} ,{{ text {m}} ^ {-3}} right) right)} ^ {-0.38}} {{ left(a / R / kappa right)} ^ {1.3}} $取决于输入功率密度,纵横比和伸长率,得出$ lambda _ {q} ^ { text {omp}} $ = [7,4,5] cm for $ {{I} _ { text {p}}} $ = [2.5,5.0,7.5] MA,这是ITER热和核负荷规格中指定的三个参考限制器等离子体电流。映射到内侧中平面,最坏的情况(7.5 MA)对应于$ lambda _ {q} ^ { text {imp}} sim 57 pm 14 $ mm,从而巩固了用于优化FW的50mm宽度面板环形形状。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号